【題目】已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2,F為CD的中點(diǎn).
(1)求證:面BCE⊥面DCE;
(2)求二面角C﹣BE﹣F的余弦值.
【答案】(1)見解析(2).
【解析】
(1)取線段CE的中點(diǎn),連接OB,OD,連接BD,可通過勾股定理逆定理證明,再由(等腰三角形性質(zhì))得線面垂直,從而有面面垂直;
(2)以O為原點(diǎn),OE、OD、OB所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,用向量的夾角的余弦值求解二面角余弦值.
(1)設(shè)點(diǎn)O為線段CE的中點(diǎn),連接OB,OD,連接BD,
∵△ACD為等邊三角形,
∴AD=AC=CD=2,
∴CD=DE=2,
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE且AB⊥AC,CD⊥DE,AB⊥AD,
∴CE,BC,BD,BE,
∴△CDE為等腰直角三角形,△BCE為等腰三角形,
∴OD,OB,OD⊥CE,
∴OD⊥OB,
又OB∩CE=O,OB、CE平面BCE,
∴OD⊥平面BCE,
又OD平面DCE,
∴平面BCE⊥平面DCE;
(2)由(1)可得,以O為原點(diǎn),OE、OD、OB所在直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標(biāo)系,
則E(,0,0),C(,0,0),B(0,0,),D(0,,0),
由F為CD的中點(diǎn)得F(,,0),
∴,,,
∴平面BEC的一個(gè)法向量,平面BEF的一個(gè)法向量,
∴,
由圖可知,二面角C﹣BE﹣F的平面角為銳角,
∴二面角C﹣BE﹣F的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x1<x2,且滿足f(x1)=(x2).證明;
(3)證明:(n∈N).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有位學(xué)生申請(qǐng)、、三所大學(xué)的自主招生.若每位學(xué)生只能申請(qǐng)其中一所大學(xué),且申請(qǐng)其中任何一所大學(xué)是等可能的.
(1)求恰有人申請(qǐng)大學(xué)的概率;
(2)求被申請(qǐng)大學(xué)的個(gè)數(shù)的概率分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左,右焦點(diǎn),,上頂點(diǎn)為,,為橢圓上任意一點(diǎn),且的面積最大值為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn).為橢圓上的兩個(gè)不同的動(dòng)點(diǎn),且(為坐標(biāo)原點(diǎn)),則是否存在常數(shù),使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)和這個(gè)定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).定義點(diǎn)的“友好點(diǎn)”為:,現(xiàn)有下列命題:
①若點(diǎn)的“友好點(diǎn)”是點(diǎn),則點(diǎn)的“友好點(diǎn)”一定是點(diǎn).
②單位圓上的點(diǎn)的“友好點(diǎn)”一定在單位圓上.
③若點(diǎn)的“友好點(diǎn)”還是點(diǎn),則點(diǎn)一定在單位圓上.
④對(duì)任意點(diǎn),它的“友好點(diǎn)”是點(diǎn),則 的取值集合是 .
其中的真命題是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且(2b﹣c)cosA=acosC.
(1)求A;
(2)若△ABC的面積為,求a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com