已知是函數(shù)的兩個極值點.
(1)若,,求函數(shù)的解析式;
(2)若,求實數(shù)的最大值;
(3)設(shè)函數(shù),若,且,求函數(shù)在內(nèi)的最小值.(用表示)
(1)
(2)
(3).
解析試題分析:.
(1)因為,是函數(shù)的兩個極值點,
所以,. 2分
所以,,解得,.
所以. 4分
(2)因為是函數(shù)的兩個極值點,
所以,
所以是方程的兩根, 5分
因為,所以對一切,恒成立,
而,,又,所以,
所以,
由,得,所以. 6分
因為,所以,即. 7分
令,則.
當時,,所以在(0,4)上是增函數(shù);
當時,,所以在(4,6)上是減函數(shù).
所以當時,有極大值為96,所以在上的最大值是96,
所以的最大值是. 9分
(3)因為是方程的兩根,且,
所以,又,, 10分
所以,
所以,
12分
其對稱軸為,因為,所以,即,
13分
所以在內(nèi)函數(shù)的最小值
. 14分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)最值中,以及函數(shù)單調(diào)性中的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為函數(shù)圖象上一點,O為坐標原點,記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)m的取值范圍;
(2)當 時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如下圖,過曲線:上一點作曲線的切線交軸于點,又過作 軸的垂線交曲線于點,然后再過作曲線的切線交軸于點,又過作軸的垂線交曲線于點,,以此類推,過點的切線 與軸相交于點,再過點作軸的垂線交曲線于點(N).
(1) 求、及數(shù)列的通項公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達式; (3) 在滿足(2)的條件下, 若數(shù)列的前項和為,求證:N.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若在實數(shù)集R上單調(diào)遞增,求的范圍;
(Ⅱ)是否存在實數(shù)使在上單調(diào)遞減.若存在求出的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若在處取得極值,求的極大值;
(2)若在區(qū)間上的圖像在圖像的上方(沒有公共點),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com