已知函數(shù)時(shí)都取得極值
求a、b的值;
(2)函數(shù)f(x)的極值;
(3)若,方程恰好有三個(gè)根,求的取值范圍.

(1)a=,b= 2
(2)

解析試題分析:解:⑴                    2分
                3分
代入解得a=,b= 2         5分
由(1)得 ,       6分
f(x)的遞增區(qū)間是( ¥, )與(1,+¥),遞減區(qū)間是( ,1) 8分
f(x)的極大值為, 極小值為       10分
問(wèn)題等價(jià)于函數(shù)的圖象有三個(gè)交點(diǎn),     12分
由(2)得,f(x)的極大值為, 極小值為

              15分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)極值中的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是函數(shù)的兩個(gè)極值點(diǎn).
(1)若,,求函數(shù)的解析式;
(2)若,求實(shí)數(shù)的最大值;
(3)設(shè)函數(shù),若,且,求函數(shù)內(nèi)的最小值.(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k∈(1/2,1]時(shí),求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),若對(duì)任意的兩個(gè)實(shí)數(shù)滿足,總存在,使得成立,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),當(dāng)時(shí),取得極大值;當(dāng)時(shí),取得極小值.
、的值;
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(1)當(dāng)x>0時(shí),求證:
(2)是否存在實(shí)數(shù)a使得在區(qū)間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當(dāng)時(shí),求證:f(1)+f(2)+f(3)+…+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) , .  
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),函數(shù)上的最大值為,若存在,使得成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)試問(wèn)函數(shù)能否在處取得極值,請(qǐng)說(shuō)明理由;
(Ⅱ)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案