已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實(shí)數(shù)a的取值范圍.
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=f(x),求g(x)的解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/km時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/km時(shí),車流速度為60km/h,研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出其最大值.(精確到1輛/小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時(shí)間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一次函數(shù)是上的增函數(shù),,已知.
(1)求;
(2)若在單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),有最大值,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某化工企業(yè)2012年底投入100萬元購(gòu)入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(單元:萬元).
(1)用x表示y;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.求該企業(yè)幾年后需要重新更換新的污水處理設(shè)備.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)有一張長(zhǎng)為80 cm,寬為60cm的長(zhǎng)方形鐵皮ABCD,準(zhǔn)備用它做成一只無蓋長(zhǎng)方體鐵皮盒,要求材料利用率為100%,不考慮焊接處損失.如圖,若長(zhǎng)方形ABCD的一個(gè)角剪下一塊正方形鐵皮,作為鐵皮盒的底面,用余下材料剪拼后作為鐵皮盒的側(cè)面,設(shè)長(zhǎng)方體的底面邊長(zhǎng)為x(cm),高為y(cm),體積為V(cm3)
(1)求出x與 y的關(guān)系式;
(2)求該鐵皮盒體積V的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知且,函數(shù),,記
(1)求函數(shù)的定義域及其零點(diǎn);
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1-x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com