【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)定義:“對于在區(qū)域上有定義的函數(shù),若滿足恒成立,則稱曲線為曲線在區(qū)域上的緊鄰曲線”.試問曲線與曲線是否存在相同的緊鄰直線,若存在,請求出實數(shù)的值;若不存在,請說明理由.

【答案】(1) 當時,上單調(diào)遞減;當時,上單調(diào)遞減,在上單調(diào)遞增;(2)見解析.

【解析】分析:(1)先求導,再對m分類討論,求出函數(shù)的單調(diào)性.(2)先把命題等價轉(zhuǎn)化為曲線與曲線是否相同的外公切線,再去求兩支曲線的外公切線令它們相等,最后轉(zhuǎn)化為唯一解問題求出m的值.

詳解:(1).

時,,函數(shù)上單調(diào)遞減;

時,令,得,函數(shù)上單調(diào)遞減;

,得,函數(shù)上單調(diào)遞增.

綜上所述,當時,上單調(diào)遞減;

時,上單調(diào)遞減,在上單調(diào)遞增.

(2)原命題等價于曲線與曲線是否相同的外公切線.

函數(shù)在點處的切線方程為

,即,

曲線在點處的切線方程為,即.

曲線的圖象有且僅有一條外公切線,

所以

有唯一一對滿足這個方程組,且,

由(1)得代入(2)消去,整理得,

關(guān)于的方程有唯一解.

.

時,上單調(diào)遞減,在上單調(diào)遞增;

所以.

因為,;,,只需.

為單減函數(shù),

時,,即,

所以時,關(guān)于的方程有唯一解,

此時,外公切線的方程為.

∴這兩條曲線存在相同的緊鄰直線,此時.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.

(Ⅰ)求的值;

(Ⅱ)試問海警船再向前航行多少分鐘方可到島

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則pq均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,平面.

(1)證明:;

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 如圖,要設計一張矩形廣告,該廣告含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2,四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, 平面平面,.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)在棱上是否存在點,使得平面?若存在, 的值;若不存在, 說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計

合計

(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱中,中點,平面,平面與棱交于點,

(1)求證:;

(2)求證:;

(3)若與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習冊答案