球的體積是
32
3
π,則此球的表面積是
 
考點(diǎn):球的體積和表面積
專題:空間位置關(guān)系與距離
分析:利用球的體積與表面積計算公式即可得出.
解答: 解:設(shè)此球的半徑為R.
32π
3
=
R3
3
,
解得R=2.
∴此球的表面積=4πR2=16π.
故答案為:16π.
點(diǎn)評:本題考查了球的體積與表面積計算公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
4
+
y2
3
=1,設(shè)M(x1,y1)、N(x2,y2)為橢圓C上不同的點(diǎn),直線MN的斜率為k1,A點(diǎn)滿足
OM
+
ON
OA
(λ≠0)的點(diǎn),且直線OA的斜率為k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的一個焦點(diǎn)為F(0,1),離心率e=
1
2
,則該橢圓的標(biāo)準(zhǔn)程為( 。
A、
x2
3
+
y2
4
=1
B、
x2
4
+
y2
3
=1
C、
x2
2
+y2=1
D、x2+
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率為
3
2

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長軸上的一個動點(diǎn),過點(diǎn)P作斜率為k的直線l交橢圓C于A、B兩點(diǎn).若|PA|2+|PB|2的值與點(diǎn)P的位置無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,已知O(0,0),A(8,0),B(0,6),△OAB的內(nèi)切圓的方程為(x-2)2+(x-2)2=4,點(diǎn)P是圓上一點(diǎn).
(1)求點(diǎn)P到直線l:4x+3y+11=0的距離的最大值和最小值;
(2)若S=|PO|2+|PA|2+|PB|2,求S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(7π+α)=-2.
(1)求
cos2α-2sin2α
sin2α+3cos2α
的值;
(2)若α是第二象限角,求
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
y
=(1,-2,4),向量
x
滿足以下三個條件:
y
x
=0;
②|
x
|=10;
x
與向量
n
=(1,0,0)垂直;
求向量
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
sinα+1
1+sinα+cosα
=
1
2
tan
α
2
+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下給出五個命題,其中真命題的序號為
 

①函數(shù)f(x)=3ax+1-2a在區(qū)間(-1,1)上存在一個零點(diǎn),則a的取值范圍是a<-1或a>
1
5
;
②“b2=ac”是“a,b,c成等比數(shù)列”的充分不必要條件;
?x∈(0,  
π
2
),  x<tanx
;
④若0<a<b<1,則lna<lnb<ab<ba

查看答案和解析>>

同步練習(xí)冊答案