【題目】某學(xué)校為了了解本校高一學(xué)生每周課外閱讀時(shí)間(單位:小時(shí))的情況,按10%的比例對(duì)該校高一600名學(xué)生進(jìn)行抽樣統(tǒng)計(jì),將樣本數(shù)據(jù)分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計(jì)該校高一學(xué)生每周課外閱讀的平均時(shí)間;
(Ⅲ)為了進(jìn)一步提高本校高一學(xué)生對(duì)課外閱讀的興趣,學(xué)校準(zhǔn)備選拔2名學(xué)生參加全市閱讀知識(shí)競(jìng)賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機(jī)抽取6名學(xué)生,再?gòu)倪@6名學(xué)生中隨機(jī)抽取2名學(xué)生代表學(xué)校參加全市競(jìng)賽,在此條件下,求第三組學(xué)生被抽取的人數(shù)X的數(shù)學(xué)期望.
【答案】解:(Ⅰ)根據(jù)頻率和為1,列出方程 (0.150+0.200+x+0.050+0.025)×2=1,
解得x=0.075;
(Ⅱ)估計(jì)該校高一學(xué)生每周課外閱讀的平均時(shí)間為
=1×0.3+3×0.4+5×0.15+7×0.1+9×0.05=3.40(小時(shí));
(Ⅲ)由題意知從第三組、第四組、第五組中依次分別
抽取3名,2名和1名學(xué)生,因此X的可能取值為0、1、2;
則P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ;
所以X的分布列為:
X | 0 | 1 | 2 |
P |
數(shù)學(xué)期望為EX=0× +1× +2× =1
【解析】(Ⅰ)根據(jù)頻率和為1,列出方程求出x的值;(Ⅱ)利用頻率分布直方圖計(jì)算平均數(shù)即可;(Ⅲ)利用分層抽樣原理計(jì)算從第三組、第四組、第五組中依次抽取的人數(shù), 得出X的可能取值,計(jì)算對(duì)應(yīng)的概率,寫(xiě)出分布列,求出數(shù)學(xué)期望.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)原點(diǎn)O(0,0)且與直線y=2x﹣8相切于點(diǎn)P(4,0).
(1)求圓C的方程;
(2)已知直線l經(jīng)過(guò)點(diǎn)(4, 5),且與圓C相交于M,N兩點(diǎn),若|MN|=2,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 (a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過(guò)點(diǎn)F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長(zhǎng)為12,則ab取得最大值時(shí)該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù)λ≥0,設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1 = 1,
().
(1)若λ = 0,求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)一切恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與坐標(biāo)原點(diǎn)距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點(diǎn),試判斷是否存在k值,使以CD為直徑的圓過(guò)定點(diǎn)E?若存在求出這個(gè)k值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A,B.
(1)求雙曲線C的離心率e的取值范圍;
(2)設(shè)直線l與y軸的交點(diǎn)為P,且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2010年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示。
(1)求第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題13分)已知數(shù)列滿足:,,且.記
集合.
(Ⅰ)若,寫(xiě)出集合的所有元素;
(Ⅱ)若集合存在一個(gè)元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);
(Ⅲ)求集合的元素個(gè)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com