【題目】近幾年出現(xiàn)各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對入院的60人進(jìn)行了問卷調(diào)查,得到了如圖的列聯(lián)表:

患三高疾病

不患三高疾病

合計

6

30

合計

36

1)請將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中

【答案】1)列聯(lián)表見解析,3;(2)有的把握認(rèn)為三高疾病與性別有關(guān)

【解析】

1)由已知,可直接補(bǔ)充列聯(lián)表,再算出抽樣比,利用患三高中女生抽取的人數(shù)等于患三高的女生總?cè)藬?shù)乘以抽樣比;

2)直接利用公式計算,結(jié)合臨界值表即可得到答案.

1)表格如下:

患三高疾病

不患三高疾病

合計

24

6

30

12

18

30

合計

36

24

60

在患三高疾病的人群中抽人,則抽樣比為,

所以女生應(yīng)抽取人;

2)因?yàn)?/span>,

那么,我們有的把握認(rèn)為三高疾病與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABCD,E分別是AC,的中點(diǎn).

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018122日,依照中國文聯(lián)及中國民間文藝家協(xié)會命名中國觀音文化之鄉(xiāng)的有關(guān)規(guī)定,中國文聯(lián)、中國民協(xié)正式命名四川省遂寧市為中國觀音文化之鄉(xiāng)”.

下表為2014年至2018年觀音文化故里某土特產(chǎn)企業(yè)的線下銷售額(單位:萬元)

年份

2014

2015

2016

2017

2018

線下銷售額

90

170

210

280

340

為了解祝福觀音、永保平安活動的支持度.某新聞?wù){(diào)查組對40位老年市民和40位年輕市民進(jìn)行了問卷調(diào)查(每位市民從很支持支持中任選一種),其中很支持的老年市民有30人,支持的年輕市民有15.

1)從以上5年中任選2年,求其銷售額均超過200萬元的概率;

2)請根據(jù)以上信息列出列聯(lián)表,并判斷能否有85%的把握認(rèn)為支持程度與年齡有關(guān).

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當(dāng)天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復(fù)利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實(shí)際付款多少元?每月還款多少元?(最后結(jié)果保留4個有效數(shù)字)

參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱柱,中,,E中點(diǎn),FAD中點(diǎn).

1)證明:平面;

2)若直線AC與平面所成的角為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會,為了增強(qiáng)對青少年VR知識的普及,某中學(xué)舉行了一次普及VR知識講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

a

35

50

女生

30

d

70

總計

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認(rèn)為VR知識的測試成績優(yōu)秀與否與性別有關(guān);

(3)為了宣傳普及VR知識,從該校測試成績獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1若展開式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大項(xiàng)

的系數(shù);

2若展開式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:平面PQC⊥平面DCQ;

(2)求直線DQ與面PQC成角的正弦值

查看答案和解析>>

同步練習(xí)冊答案