17.若一拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,$\frac{1}{2}$),在該拋物線的方程為( 。
A.y2=$\frac{1}{8}$xB.y2=2xC.y=2x2D.y=$\frac{1}{2}$x2

分析 利用拋物線的焦點(diǎn)坐標(biāo),拋物線的定義求解拋物線方程即可.

解答 解:一拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,$\frac{1}{2}$),
可得p=1,
該拋物線的方程為:y=$\frac{1}{2}$x2
故選:D.

點(diǎn)評 本題考查拋物線的簡單性質(zhì)以及拋物線方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個函數(shù)中,在(0,+∞)上是增函數(shù)的是(  )
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)在定義域內(nèi)滿足:
(1)對于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正數(shù)M,使得|f(x)|≤M,則稱函數(shù)f(x)為“單通道函數(shù)”,給出以下4個函數(shù):
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數(shù)”有①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè){an}是正數(shù)等差數(shù)列,{bn}是正數(shù)等比數(shù)列,且a1=b1,a11=b11,則(  )
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列${a_1}=\frac{1}{3}$、${a_1}=\frac{1}{3}$滿足:${a_1}=\frac{1}{3}$,an+bn=1,${b_{n+1}}=\frac{1}{{2-{b_n}}}$.
(1)求證:數(shù)列{$\frac{1}{_{n}-1}$}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,已知B=2A,∠ACB的平分線CD把三角形分成面積為4:3的兩部分,則cosA=( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=sin2x-\sqrt{3}cos2x$的圖象的一條對稱軸方程為( 。
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三個函數(shù)f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零點(diǎn)依次為a,b,c,則下列結(jié)論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函數(shù)h(x)=f[g(x)]的圖象關(guān)于直線x=2對稱,求a的值;
(Ⅱ)給出函數(shù)y=g[f(x)]的零點(diǎn)個數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案