【題目】已知函數(shù)f(x)=|3x﹣4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|﹣4,在下列坐標(biāo)系中作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實(shí)數(shù)λ的取值范圍.

【答案】解:(Ⅰ)函數(shù)g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4, 圖象如圖所示,
由圖象可得,x= ,g(x)有最小值﹣ ;
(Ⅱ)由題意,|3x﹣4|<5,可得﹣ <x<3,∴p,q∈(﹣ ,3),
∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,
∴λ≥15.

【解析】(Ⅰ)根據(jù)函數(shù)解析式作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;(Ⅱ)記不等式f(x)<5的解集為M,可得p,q∈(﹣ ,3),若p,q∈M,且|p+q+pq|<λ,利用絕對(duì)值不等式,即可求實(shí)數(shù)λ的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosx(sinx+cosx)-,x∈R.

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;

(2)設(shè)>0,若函數(shù)g(x)=f(x+)為奇函數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+ ,其中a>0.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)若直線θ= (ρ∈R)與曲線C1交于P,Q兩點(diǎn),求|PQ|的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量 與尺寸 之間滿足關(guān)系式 為大于 的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

對(duì)數(shù)據(jù)作了處理,相關(guān)統(tǒng)計(jì)量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求 關(guān)于 的回歸方程(提示:由已知, 的線性關(guān)系);
(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間 內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對(duì)于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題錯(cuò)誤的是( )
A.命題“若 ,則 ”的逆命題為“若 ,則
B.對(duì)于命題 ,使得 ,則 ,則
C.“ ”是“ ”的充分不必要條件
D.若 為假命題,則 均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)綜》是明朝程大位所著數(shù)學(xué)名著,其中有這樣一段表述:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一”,其意大致為:有一七層寶塔,每層懸掛的紅燈數(shù)為上一層的兩倍,共有381盞燈,則塔從上至下的第三層有( )盞燈.
A.14
B.12
C.10
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)f(x)的最小正周期及單調(diào)減區(qū)間;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}n項(xiàng)和為Sn,已知,S1S2,S4成等比數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案