【題目】在平面直角坐標系中,已知直線:(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設點的直角坐標為,直線與曲線的交點為,求的值.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,拋物線與橢圓在第一線象限的交點為.
(1)求曲線、的方程;
(2)在拋物線上任取一點,在點處作拋物線的切線,若橢圓上存在兩點關于直線對稱,求點的縱坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時空的阻隔,畫條公垂線向你沖來,一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.
(1)求證:;
(2)若,,四棱錐的體積為,求四棱錐的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統計表:
維修次數 | 8 | 9 | 10 | 11 | 12 |
頻數 | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內的維修次數,y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數.
(1)若=10,求y與x的函數解析式;
(2)若要求“維修次數不大于”的頻率不小于0.8,求n的最小值;
(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買10次還是11次維修服務?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋擲一藍、一黃兩枚質地均勻的正四面體骰子,分別觀察底面上的數字.
(1)用表格表示試驗的所有可能結果;
(2)列舉下列事件包含的樣本點:A=“兩個數字相同”,B=“兩個數字之和等于5”,C=“藍色骰子的數字為2”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(不與A,C重合),過點D作DE∥BC交AB于點E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.
(1)若異面直線BE與AC垂直,確定圖1中點D的位置;
(2)證明:無論點D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列說法是否正確,若錯誤,請舉出反例
(1)互斥的事件一定是對立事件,對立事件不一定是互斥事件;
(2)互斥的事件不一定是對立事件,對立事件一定是互斥事件;
(3)事件與事件B中至少有一個發(fā)生的概率一定比與B中恰有一個發(fā)生的概率大;
(4)事件與事件B同時發(fā)生的概率一定比與B中恰有一個發(fā)生的概率小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com