設(shè)α,β是兩個不同的平面,l是一條直線,以下命題:①若l⊥α,α⊥β,則l?β,②若l∥α,α∥β,則l?β③若l⊥α,α∥β,則l⊥β,④若l∥α,α⊥β,則l⊥β   其中正確命題的個數(shù)是( 。
A、1B、2C、3D、0
考點:空間中直線與平面之間的位置關(guān)系
專題:閱讀型,空間位置關(guān)系與距離
分析:①可舉反例,l∥β,即可判斷;②由線面平行的性質(zhì)和面面平行的性質(zhì),即可判斷;③運用線面垂直的判定,和面面平行的性質(zhì),即可判斷;④由線面平行的性質(zhì)和面面垂直的性質(zhì),即可判斷.
解答: 解:①若l⊥α,α⊥β,則l?β,或l∥β,故①錯;
②若l∥α,α∥β,則l?β或l∥β,故②錯;
③若l⊥α,α∥β,則過l作兩個平面M,N,使平面M與α,β分別交于m1,m2,平面N與平面α,β交于n1,n2,則由α∥β得到m1∥m2,n1∥n2,由l⊥α,得l⊥m1,l⊥n1,故l⊥m2,l⊥n2,故l⊥β,故③正確;
④若l∥α,α⊥β,則l⊥β 或l∥β,故④錯.
故選:A.
點評:本題主要考查空間直線與平面的位置關(guān)系,考查線面平行與垂直的判定和性質(zhì)、面面平行與垂直的判斷和性質(zhì),熟記這些是迅速解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sinx+
3
cosx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α∥β,P是平面α,β外的一點,過點P的直線m與平面α,β分別交于A,C兩點,過點P的直線n與平面α,β分別交于B,D兩點,若PA=6,AC=9,PD=10,則BD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各式的值等于
1
4
的是(  )
A、2cos2
π
12
-1
B、1-2sin275°
C、sin15°cos15°
D、
2tan22.5°
1-tan222.5°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若sin(A+B+C)=sin(A-B+C),則△ABC的形狀一定是( 。
A、等腰三角形
B、直角三角形
C、等腰或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3,且(
a
+k
b
)⊥(
a
-k
b
),則k等于( 。
A、±
4
3
B、±
3
4
C、±
3
5
D、±
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b為不相等的兩正數(shù),且a3-b3=a2-b2,則a+b的取值范圍是( 。
A、(0,
4
3
B、(1,
4
3
C、(
4
3
,2)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)甲、乙兩樓相距20m,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則甲、乙兩樓的高分別是( 。
A、20
3
m,
40
3
3
m
B、10
3
m,20
3
m
C、10(
3
-
2
)m,20
3
m
D、
15
2
3
m,
20
3
3
m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是5名學生一次數(shù)學測試成績的莖葉圖,則這5名學生該次測試成績的方差為(  )
A、20B、21.2
C、106D、127

查看答案和解析>>

同步練習冊答案