執(zhí)行如圖所示的程序框圖,如果輸入x,t的值均為2,最后輸出S的值為n,在區(qū)間[0,10]上隨機(jī)選取一個(gè)數(shù)D,則D≤n的概率為( 。
A、
4
10
B、
5
10
C、
6
10
D、
7
10
考點(diǎn):程序框圖,幾何概型
專(zhuān)題:算法和程序框圖
分析:由已知中的程序算法可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.
解答: 解:∵輸入x,t的值均為2,
當(dāng)k=1時(shí),滿(mǎn)足條件k≤t,執(zhí)行完循環(huán)體后,M=2,S=5,k=2,
當(dāng)k=2時(shí),滿(mǎn)足條件k≤t,執(zhí)行完循環(huán)體后,M=2,S=7,k=3,
當(dāng)k=3時(shí),不滿(mǎn)足條件k≤t,
故輸出的S值為7,
故在區(qū)間[0,10]上隨機(jī)選取一個(gè)數(shù)D,則D≤n的概率P=
7
10

故選:D
點(diǎn)評(píng):本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小區(qū)在一次對(duì)20歲以上居民節(jié)能意識(shí)的問(wèn)卷調(diào)查中,隨機(jī)抽取了100份問(wèn)卷進(jìn)行統(tǒng)計(jì),得到相關(guān)的數(shù)據(jù)如下表:
節(jié)能意識(shí)弱節(jié)能意識(shí)強(qiáng)總計(jì)
20至50歲45954
大于50歲103646
總計(jì)5545100
(1)由表中數(shù)據(jù)直觀分析,節(jié)能意識(shí)強(qiáng)弱是否與人的年齡有關(guān)?
(2)若全小區(qū)節(jié)能意識(shí)強(qiáng)的人共有350人,則估計(jì)這350人中,年齡大于50歲的有多少人?
(3)按年齡分層抽樣,從節(jié)能意識(shí)強(qiáng)的居民中抽5人,再是這5人中任取2人,求恰有1人年齡在20至50歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A1B1C1中,點(diǎn)D是BC的中點(diǎn),BC=2,BB1=
2

(1)求證:A1C∥平面AB1D;
(2)求證:BC1⊥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
sin(2x-1)
x-1
,則y′=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
3
,其左、右頂點(diǎn)分別為A1(-3,0),A2(3,0).一條不經(jīng)過(guò)原點(diǎn)的直線(xiàn)l:y=kx+m與該橢圓相交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若m+k=0,直線(xiàn)A1M與NA2的斜率分別為k1,k2.試問(wèn):是否存在實(shí)數(shù)λ,使得k1+λk2=0?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可估計(jì)樣本的平均重量為(  )
A、13B、12C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn=(-1)n+1,求數(shù)列{an}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年9月4日國(guó)務(wù)院發(fā)布了《國(guó)務(wù)院關(guān)于深化考試招生制度改革的實(shí)施意見(jiàn)》,其中指出:文理將不分科;總成績(jī)由同一高考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)3個(gè)科目成績(jī)和高中學(xué)業(yè)水平考試成績(jī)組成;外語(yǔ)科目提供兩次考試機(jī)會(huì);計(jì)入總成績(jī)的高中學(xué)業(yè)水平考試科目,由考生根據(jù)高考高校要求和自身特長(zhǎng),在其余六科中自主選擇.某社區(qū)N名居民接受了當(dāng)?shù)仉娨暸_(tái)對(duì)《意見(jiàn)》看法的采訪,他們的年齡在25歲至50歲之間,按年齡分5組:[25,30),[30,35),[35,40),[40,45),[45,50],得到的頻率分布直方圖如圖所示,下表是年齡的頻數(shù)分布表:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)25ab

(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的前3組中采用分層抽樣的方法選取6人,則年齡在第1,2,3組的人數(shù)分別是多少?再?gòu)倪@6人中隨機(jī)選取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|2x-1|+ax-5,如果函數(shù)y=f(x)恰有兩個(gè)不同的零點(diǎn),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案