【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

【答案】(1;2.

【解析】

試題分析:(I)根據(jù),設(shè)直線方程為,

確定的坐標,由確定得到

再根據(jù)點在橢圓上,求得進一步即得所求;

2可設(shè),

得到橢圓的方程為

根據(jù)動直線與橢圓有且只有一個公共點P

得到,整理得.

確定的坐標,

,

軸上存在一定點,使得,那么

可得,由恒成立,故,得解.

試題解析:1 ,設(shè)直線方程為,

,則,, 2分

3分

,=,

整理得 4分

點在橢圓上,, 5分

, 6分

2可設(shè),

橢圓的方程為 7分

8分

動直線與橢圓有且只有一個公共點P

,即

整理得 9分

設(shè) 則有,

10分

,

軸上存在一定點,使得,

恒成立

整理得, 12分

恒成立,故

所求橢圓方程為 13分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)修建一棟復古建筑,其窗戶設(shè)計如圖所示.圓的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交(,為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設(shè),透光區(qū)域的面積為.

(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;

(2)根據(jù)設(shè)計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當該比值最大時,求邊的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)如果方程有兩個不相等的解,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為常數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,.

1)求證:平面平面

2)若二面角的正切值為,求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50350度之間,頻率分布直方圖如圖1.

A類用戶

B類用戶

9

7

7

0

6

8

6

5

1

7

8

9

9

8

2

8

5

6

7

8

8

7

1

0

9

7

8

9

2

1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為高用電家庭,現(xiàn)對這兩類用戶進行問卷調(diào)查,讓其對供電服務(wù)進行打分,打分情況見莖葉圖2;若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為滿意度與用電量高低有關(guān)?

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔一小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)莖葉如圖所示.

)根據(jù)樣本數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的均值與方差,并說明哪個車間的產(chǎn)品的重量相對穩(wěn)定;

)若從乙車間件樣品中隨機抽取兩件,求所抽取兩件樣品重量之差不超過克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知是圓的直徑.若與圓外離的圓上存在點,連接與圓交于點,滿足,則半徑的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的單調(diào)區(qū)間;

2)當,討論的零點個數(shù);

查看答案和解析>>

同步練習冊答案