【題目】如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求二面角的正弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)先證明四邊形是菱形,進(jìn)而可知,然后可得到平面,即可證明平面平面;
(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.以O為坐標(biāo)原點(diǎn),以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進(jìn)而可求出二面角的正弦值.
(1)證明:因?yàn)辄c(diǎn)為的中點(diǎn),,所以,
因?yàn)?/span>,所以,所以四邊形是平行四邊形,
因?yàn)?/span>,所以平行四邊形是菱形,所以,
因?yàn)槠矫?/span>平面,且平面平面,所以平面.
因?yàn)?/span>平面,所以平面平面.
(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.由題意可知AC,BE,OP兩兩垂直,故以O為坐標(biāo)原點(diǎn),以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系.
因?yàn)榈酌?/span>ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,
所以,
則,設(shè)平面ABF的法向量為,
則,不妨取,則,
設(shè)平面DBF的法向量為,
則,不妨取,則,
故.
記二面角的大小為,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,其中為常數(shù);
(1)若,且是奇函數(shù),求的值;
(2)若, ,函數(shù)的最小值是,求的最大值;
(3)若,在上存在個(gè)點(diǎn) ,滿足, ,
,使得,
求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知設(shè)函數(shù).
(1)若,求極值;
(2)證明:當(dāng),時(shí),函數(shù)在上存在零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,,求的單凋區(qū)間;
(2)若函數(shù)是函數(shù)的圖像的切線,求的最小值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為正方形,平面平面,且為等邊三角形,若四棱錐的體積與四棱錐外接球的表面積大小之比為,則四棱錐的表面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖象與軸交于不同兩點(diǎn),,且.
(1)求實(shí)數(shù)的取值范圍;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點(diǎn),求線段AB的中點(diǎn)P到坐標(biāo)原點(diǎn)O的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com