在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個(gè)點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.
(1)曲線的直角坐標(biāo)方程為:;曲線的直角坐標(biāo)方程為;
(2)曲線的直角坐標(biāo)方程為.

試題分析:(1)對(duì)于曲線,把已知參數(shù)方程第一式和第二式移向,使等號(hào)右邊分別僅含,平方作和后可得曲線的直角坐標(biāo)方程;對(duì)于曲線,把代入極坐標(biāo)方程的展開(kāi)式中即可得到曲線的直角坐標(biāo)方程.
(2)由于圓的半徑為,所以所求曲線與直線平行,且與直線相距時(shí)符合題意.利用兩平行直線的距離等于,即可求出,進(jìn)而得到曲線的直角坐標(biāo)方程.
試題解析:(1)曲線的參數(shù)方程為,即,將兩式子平方化簡(jiǎn)得,
曲線的直角坐標(biāo)方程為:;
曲線的極坐標(biāo)方程為,即,
所以曲線的直角坐標(biāo)方程為.
(2)由于圓的半徑為,故所求曲線與直線平行,且與直線相距時(shí)符合題意.由,解得.故曲線的直角坐標(biāo)方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為: 為參數(shù)),兩曲線相交于兩點(diǎn). 求:
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,點(diǎn)P的直角坐標(biāo)為。若以圓點(diǎn)O為極點(diǎn),軸半軸為極軸建立坐標(biāo)系,則點(diǎn)P的極坐標(biāo)可以是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(選修4-3坐標(biāo)系與參數(shù)方程)(本題滿分10分)
求直線)被曲線所截的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系中,圓ρ=4sinθ的圓心到直線θ= (ρ∈R)的距離是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

極坐標(biāo)系中,極點(diǎn)到直線(其中為常數(shù))的距離是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在極坐標(biāo)系中,過(guò)點(diǎn)作圓的切線,則切線的極坐標(biāo)方程為_(kāi)______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(A).(選修4—4坐標(biāo)系與參數(shù)方程)已知點(diǎn)是曲線上任意一點(diǎn),
則點(diǎn)到直線的距離的最小值是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2).(坐標(biāo)系與參數(shù)方程選做題)若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,則線段的極坐標(biāo)為( )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案