分析 (1)將A、B的坐標代入函數的解析式,求出a,b的值即可;
(2)根據函數單調性的定義證明即可;
(3)根據函數的單調性得到關于m、n的方程,求出m、n的值,從而求出m+n的值即可.
解答 解:(1)函數f(x)=$\frac{x-a}$的圖象過點A(0,$\frac{3}{2}$),B(3,3),
∴$\left\{\begin{array}{l}{\frac{0-a}=\frac{3}{2}}\\{\frac{3-a}=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=2}\\{b=3}\end{array}\right.$…(2分)
∴f(x)=$\frac{3}{x-2}$ …(4分)
(2)函數f(x)在(2,+∞)上單調遞減,
證明:任取x2>x1>2,
則f(x1)-f(x2)=$\frac{3{(x}_{2}{-x}_{1})}{{(x}_{1}-2){(x}_{2}-2)}$…(6分)
∵x2>x1>2,
∴x2-x1>0,x1-2>0,x2-2>0,
∴$\frac{3{(x}_{2}{-x}_{1})}{{(x}_{1}-2){(x}_{2}-2)}$>0,得f(x1)-f(x2)>0,
∴f(x1)>f(x2),
函數f(x)在(2,+∞)上是單調遞減函數 …(8分)
(3)∵m,n∈(2,+∞),
∴函數f(x)在[m,n]上單調遞減,
∴f(m)=3,f(n)=1 …(10分)
∴$\frac{3}{m-2}$=3,$\frac{3}{n-2}$=1,
∴m=3,n=5,
∴m+n=8 …(12分)
點評 本題考查了求函數的解析式,函數的單調性以及函數的值域問題,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,2) | B. | (2,0) | C. | (2,2) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com