分析 (Ⅰ)多面體ABCCDS的體積即四棱錐S-ABCD的體積,由此能求出結果.
(Ⅱ)以D為原點,DS,DA,DC分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A-SB-D的余弦值.
解答 解:(Ⅰ)多面體ABCCDS的體積即四棱錐S-ABCD的體積.
所以${V_{S-ABCD}}=\frac{1}{3}{S_{平行四邊形ABCD}}×|{SD}|=\frac{1}{3}×2a×a×\sqrt{3}a=\frac{{2\sqrt{3}{a^3}}}{3}$…(4分)
(Ⅱ)以D為原點,DS,DA,DC分別為x,y,z軸,建立空間直角坐標系,
則D(0,0,0),S($\sqrt{3}a,0,0$),B(0,a,2a),A(0,a,0),B(0,a,2a),
$\overrightarrow{DS}=(\sqrt{3}a,0,0)$,$\overrightarrow{DB}=(0,a,2a)$,
設面SBD的一個法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DS}=\sqrt{3}a=0}\\{\overrightarrow{n}•\overrightarrow{DB}=ay+2az=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,-2,1),
又∵$\overrightarrow{AB}=(0,0,2a)$,$\overrightarrow{SA}=(-\sqrt{3}a,a,0)$
∴設面SAB的一個法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=2az=0}\\{\overrightarrow{m}•\overrightarrow{SA}=-\sqrt{3}ax+ay=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}=(1,\sqrt{3},0)$,…(11分)
設二面角A-SB-D的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{15}}{5}$,
所以二面角A-SB-D的余弦值為$\frac{{\sqrt{15}}}{5}$.…(12分)
點評 本題考查多面體的體積的求法,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com