17.點(diǎn)(x,y)在映射f下的對(duì)應(yīng)元素為(x+y,x-y),則點(diǎn)(2,0)在f作用下的對(duì)應(yīng)元素為( 。
A.(0,2)B.(2,0)C.(2,2)D.(-1,-1)

分析 映射f:(x,y)→(x+y,x-y),已知 x=2,y=0,可得x+y=2,x-y=2,即可得出結(jié)論.

解答 解:由映射的定義知,已知x=2,y=0,
∴x+y=2,x-y=2,
∴(2,0)在映射f下的對(duì)應(yīng)元素是(2,2),
故選:C.

點(diǎn)評(píng) 本題考查映射概念,正確理解映射的定義是解題基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.不等式ax2+bx+c>0的解集是(1,2),則不等式cx2+bx+a>0的解集是{x|$\frac{1}{2}$<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)y=x2+2x+a(a∈R)的圖象如圖所示,則下列函數(shù)與它的圖象對(duì)應(yīng)正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a,b,c滿足c<b<a,且ac<0,那么下列關(guān)系式中一定成立的是①.
①ab>ac
②c(b-a)<0
③cb2<ab2
④ac(a-c)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.記min{p,q}=$\left\{\begin{array}{l}{p(p≤q)}\\{q(p>q)}\end{array}\right.$,若函數(shù)f(x)=min{3+log${\;}_{\frac{1}{4}}$x,log2x}
(1)用分段函數(shù)形式寫(xiě)出函數(shù)f(x)的解析式;
(2)求不等式組0<f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合U={1,2,3,4,5,6},A={2,4,6},求∁UA={1,3,5} .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x-a}$的圖象過(guò)點(diǎn)A(0,$\frac{3}{2}$),B(3,3)
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明;
(3)若m,n∈(2,+∞)且函數(shù)f(x)在[m,n]上的值域?yàn)閇1,3],求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖所示,該幾何體是由一個(gè)直三棱柱ADE-BCF和一個(gè)正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P-ABCD的高h(yuǎn),使得二面角C-AF-P的余弦值是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=[x]的函數(shù)值表示不超過(guò)x的最大整數(shù),例如,[-3.5]=-4,[2.1]=2.當(dāng)x∈(-2.5,3]時(shí),f(x)的值域是{-3,-2,-1,0,1,2,3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案