若復(fù)數(shù)Z1=1+i,Z2=3-i,則
Z2
Z1
=( 。
A、1+iB、1+2i
C、1-2iD、2-2i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡求值.
解答: 解:∵Z1=1+i,Z2=3-i,
Z2
Z1
=
3-i
1+i
=
(3-i)(1-i)
(1+i)(1-i)
=
2-4i
2
=1-2i

故選:C.
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是公差d不為零的等差數(shù)列,其前n項(xiàng)和為Sn,若記數(shù)據(jù)a1,a2,a3,…,a2015的方差為λ1,數(shù)據(jù)
S1
1
,
S2
2
,
S3
3
,…,
S2015
2015
的方差為λ2,則( 。
A、λ1>λ2
B、λ12
C、λ1<λ2
D、與的大小關(guān)系與公差的正負(fù)有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=
π
3
,AC=4,BC=2
3
,則ABC的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若含有三個實(shí)數(shù)的集合A可表示為{a,
b
a
,1},也可表示為{a2,a+b,0},求a1+b2+a3+a4+…+a2013+b2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn)
(1)求證:直線BD1∥平面PAC
(2)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x(x-3)<0},B={x||x-1|<2},則A∪B=( 。
A、(-1,3)
B、(0,3)
C、(-1,+∞)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx-a在區(qū)間[
π
3
,π]上有2個零點(diǎn),則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)口袋中有黑球、白球共7 個,從中任取兩個球,令取到白球的個數(shù)為ξ,且ξ的數(shù)學(xué)期望Eξ=
6
7
,則口袋中白球的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R).
(1)若a=0,當(dāng)x∈[
1
2
,1]時恒有f(x)≥0,求b 的取值范圍;
(2)若a≠0且b=-1,試在直角坐標(biāo)平面內(nèi)找出橫坐標(biāo)不同的兩個點(diǎn),使得函數(shù)y=f(x)的圖象永遠(yuǎn)不經(jīng)過這兩點(diǎn);
(3)若a≠0,函數(shù)y=f(x)在區(qū)間[3,4]上至少有一個零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

同步練習(xí)冊答案