【題目】對(duì)于數(shù)集,其中, ,定義向量集.若對(duì)于任意,使得,則稱具有性質(zhì).例如具有性質(zhì)

)若,且具有性質(zhì),求的值.

)若具有性質(zhì),求證: ,且當(dāng)時(shí),

)若具有性質(zhì),且, 為常數(shù)),求有窮數(shù)列 , 的通項(xiàng)公式.

【答案】(1)1;(2)見解析;(3), , ,

【解析】試題分析:(Ⅰ)由于具有該性質(zhì),所以必有任意向量都存在垂直向量,可以求出值。

(Ⅱ),設(shè)滿足,可得, 中之一為-1,另一為1,1X,然后只要用反證法證明之間不存在即可

(Ⅲ)可以利用后一項(xiàng)比前一項(xiàng)的比值建立數(shù)集,最終求出后一項(xiàng)與前一項(xiàng)比是定值,從而是等比數(shù)列.

試題解析:

(1)選取Y中與垂直的元素必有形式.

所以x=2b,從而x=4.

2)證明:取.設(shè)滿足.

,所以、異號(hào).

因?yàn)?1X中唯一的負(fù)數(shù),所以、中之一為-1,另一為1

1X.

假設(shè),其中,則.

選取,并設(shè)滿足,即

、異號(hào),從而、之中恰有一個(gè)為-1.

=-1,則,矛盾;

=-1,則,矛盾.

所以x1=1.

(3)設(shè),,則等價(jià)于

,則數(shù)集具有性質(zhì)當(dāng)且僅當(dāng)數(shù)集關(guān)于原點(diǎn)對(duì)稱。

注意到中的唯一負(fù)數(shù),共有個(gè)數(shù),所以也只有個(gè)數(shù)。

由于,已有個(gè)數(shù),對(duì)以下三角數(shù)陣

,。

注意到,所以,從而數(shù)列的通項(xiàng)為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若為整數(shù),且當(dāng)時(shí), ,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形ABCD中,AB=8AD=5,CD=,A=D=

(Ⅰ)求△ABD的內(nèi)切圓的半徑;

(Ⅱ)求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知函數(shù)

(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

(2)若在中,角,,的對(duì)邊分別為,,,,為銳角,且,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中實(shí)數(shù)滿足,若的最大值為,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市擬興建九座高架橋,新聞媒體對(duì)此進(jìn)行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在40歲以下(含40歲)的人有多少被抽;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個(gè)總體,在這6人中任意選取2人,求至少有1人在40歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, , , , 的中點(diǎn).

)求證: 平面

)求二面角的余弦值.

)在線段上是否存在點(diǎn),使得,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在, , 上的奇函數(shù),當(dāng) 時(shí), .

Ⅰ)求的解析式;

Ⅱ)設(shè), ,求證:當(dāng)時(shí), 恒成立;

Ⅲ)是否存在實(shí)數(shù),使得當(dāng), 時(shí), 的最小值是?如果存在,

求出實(shí)數(shù)的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為(

137 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

A.0.40 B.0.30 C.0.35 D.0.25

查看答案和解析>>

同步練習(xí)冊(cè)答案