已知函數(shù),.
(1)如果函數(shù)在上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,請求出的取值范圍;若不存在,請說明理由.
(1)(2)
解析試題分析:解:(1)當(dāng)時(shí),在上是單調(diào)增函數(shù),不符合題意.…1分
當(dāng)時(shí),的對稱軸方程為,由于在上是單調(diào)增函數(shù),不符合題意.
當(dāng)時(shí),函數(shù)在上是單調(diào)減函數(shù), 則,解得,
綜上,的取值范圍是. 4分
(2)把方程整理為,
即為方程. 5分
設(shè) ,原方程在區(qū)間()內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根, 即為函數(shù)在區(qū)間()內(nèi)有且只有兩個(gè)零點(diǎn). ……6分
7分
令,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a7/2/1mj8a3.png" style="vertical-align:middle;" />,解得或(舍) 8分
當(dāng)時(shí), , 是減函數(shù);
當(dāng)時(shí), ,是增函數(shù).……10分
在()內(nèi)有且只有兩個(gè)不相等的零點(diǎn), 只需 13分
即 ∴
解得, 所以的取值范圍是() . 14分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用
點(diǎn)評:解決的關(guān)鍵是通過導(dǎo)數(shù)的符號(hào)判定函數(shù)但典型,進(jìn)而來解決方程根的問題,以及函數(shù)單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
(1)當(dāng)a=l時(shí),求函數(shù)的極值;
(2)當(dāng)a2時(shí),討論函數(shù)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在 處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值 ;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e0/7/19h3k2.png" style="vertical-align:middle;" />
(1)求的值;
(2)若關(guān)于的函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4—5:不等式選講
設(shè)函數(shù)=
(I)求函數(shù)的最小值m;
(II)若不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)證明:(,,其中無理數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
①當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)在處取得極值,不等式對恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com