【題目】為了調(diào)查“五一”小長假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機抽取500人進行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)
選擇“有水的地方” | 不選擇“有水的地方” | 合計 | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合計 | 300 | 200 | 500 |
(Ⅰ)據(jù)此樣本,有多大的把握認為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機抽取3人,設3人中選擇“有水的地方”的人數(shù)為隨機變量X,求隨機變量X的數(shù)學期望和方差.
附臨界值表及參考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
【答案】(Ⅰ)有99.9%的把握認為選擇“有水的地方”與性別有關(guān)(Ⅱ)
【解析】試題分析:(Ⅰ)把列聯(lián)表中的數(shù)據(jù)帶入得到的結(jié)果與10.828比較即得出結(jié)論(Ⅱ)現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機抽取3人,設3人中選擇“有水的地方”的人數(shù)為隨機變量X,則X~B(n, )則
試題解析:(Ⅰ) ,
∴有99.9%的把握認為選擇“有水的地方”與性別有關(guān);
(Ⅱ)估計該市的所有出游旅客中任一人選擇“有水的地方”出游的概率為,
X的可能取值為0,1,2,3,由題意,得X~B(3, ),
∴隨機變量X的數(shù)學期望,
方差.
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)當a=2時,求集合A∩B;
(Ⅱ)若A∩(UB)=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點是圓上的任意一點,,線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)若直線與點的軌跡相切,且與圓相交于點和,求直線和三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ) 當a=-1時,求證: ;
(Ⅱ) 對任意,存在,使成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數(shù)a∈R.
(Ⅰ)討論g(x)的單調(diào)性;
(Ⅱ)當a>0時,若f(x)有兩個零點x1,x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點x0,使得x0lnx0+lnx0-2x0>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省2016年高中數(shù)學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標準如下:85分及以上,記為A等;分數(shù)在[70,85)內(nèi),記為B等;分數(shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知某學校學生的原始成績均分布在[50,100]內(nèi),為了了解該校學生的成績,抽取了50名學生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計該校學生學業(yè)水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學生中隨機抽取3名學生進行調(diào)研,用X表示所抽取的3名學生中成績?yōu)镈等級的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求出圓的直角坐標方程;
(2)已知圓與軸相交于, 兩點,直線: 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中,且.
(1)求值;
(2)若,為自然對數(shù)的底數(shù),求證:當時,;
(3)若函數(shù)為上的單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com