(本小題滿分12分)
已知橢圓的右準線是,傾斜角為交橢圓于A、B兩點,AB的中點為
(I)求橢圓的方程;
(II)若P、Q是橢圓上滿足若直線OP、OQ的斜率分別為,求證:是定值。
(I)橢圓方程為
(II)證明略,
解:(I)由于直線AB的傾斜角為且過點,
所以直線的方程為
代入橢圓方程,整理得,


,聯(lián)立,
求得
所以橢圓方程為…………6分
(II)設都在橢圓上,


…………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)雙曲線與橢圓有相同的焦點,直線是雙曲線
一條漸近線.
(1)求雙曲線的方程;
(2)已知過點的直線與雙曲線交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

中心在坐標原點,焦點在x軸上的橢圓,它的離心率為,與直線x+y-1=0相交于兩點M、N,且OM⊥ON.求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)若橢圓的離心率等于,拋物線的焦點在橢圓的頂點上。
(1)求拋物線的方程;
(2)求過點的直線與拋物線、兩點,又過、作拋物線的切線、,當時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設中心在原點的橢圓離心率為e,左、右兩焦點分別為F1、F2,拋物線F2為焦點,點P為拋物線和橢圓的一個交點,若PF2x軸成45°,則e的值為    ▲    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若焦點在x軸上的橢圓的離心率為,則m="                                       " (       )
          B        C                D 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的離心率為e,焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點.設P為兩條曲線的一個交點,若,則e的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點在y軸上,
的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左焦點,右頂點A,上頂點B,且,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

同步練習冊答案