如圖,給定由15個(gè)點(diǎn)(任意相鄰兩點(diǎn)間距離為1)組成的正三角形點(diǎn)陣,在其中任意取3個(gè)點(diǎn),以這3個(gè)點(diǎn)為頂點(diǎn)構(gòu)成的正三角形的個(gè)數(shù)是( 。
A、15B、28C、29D、33
考點(diǎn):排列、組合的實(shí)際應(yīng)用
專題:應(yīng)用題,排列組合
分析:按邊長分為1,2,3,
3
,4共4類,分別計(jì)算出個(gè)數(shù)即可
解答: 解:邊長為1的正三角形共有1+3+5+7=16個(gè);
邊長為2的正三角形共有1+2+4=7個(gè);
邊長為3的正三角形共有1+2=3個(gè).
邊長為
3
的有6個(gè).
邊長為4的有1個(gè)
綜上可知:共有33個(gè).
故選:D.
點(diǎn)評(píng):正確按邊長分類是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=cos1,b=cos3,c=cos5,則由如圖算法輸出值對(duì)應(yīng)的是( 。
A、aB、bC、cD、d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不重合的直線l1,l2的傾斜角分別為α1,α2,給出如下四個(gè)命題:
①若sinα1=sinα2,則l1∥l2
②若cosα1=cosα2,則l1∥l2
③若l1⊥l2,則tanα1•tanα2=-1
④若l1⊥l2,則sinα1sinα2+cosα1cosα2=0
其中真命題是(  )
A、①③B、②④
C、②③D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)空間幾何體的三視圖如圖,該幾何體的體積為16π+
8
5
3
則正視圖與側(cè)視圖中的x的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,若復(fù)數(shù)
z
1+2i
=
5
i
5
,則|z|=( 。
A、1
B、2
C、
5
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(
x
2
+
π
3
)的圖象可由函數(shù)y=3sinx經(jīng)(  )變換而得.
A、先把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變),再向左平移
π
6
個(gè)單位
B、先把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向右平移
π
3
個(gè)單位
C、先向右平移
π
3
個(gè)單位,再把橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變)
D、先向左平移
π
3
個(gè)單位,再把橫坐標(biāo)擴(kuò)大到原來的兩倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點(diǎn).
(1)求證:A1B∥平面ADC1
(2)若平面ABC⊥平面BCC1B1,求證:AD⊥DC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+(1-a)x-lnx(a>-1);
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0∈(0,+∞),使f(x0)<0,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知幾何體A-BCED(圖1)的三視圖如圖2所示,其中側(cè)視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:

(Ⅰ)異面直線DE與AB所成角的余弦值;
(Ⅱ)幾何體E-ACD的體積V的大;
(Ⅲ)CD與平面ABD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案