不等式2x2-9x+m≤0對x∈[2,3]總成立,求實(shí)數(shù)m的范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:構(gòu)造函數(shù)f(x)=2x2-9x+m,利用二次函數(shù)的性質(zhì)將不等式2x2-9x+m≤0對x∈[2,3]總成立轉(zhuǎn)化為
f(2)≤0
f(3)≤0
,解不等式組即可得到實(shí)數(shù)m的范圍.
解答: 解:令f(x)=2x2-9x+m,
則由二次函數(shù)性質(zhì)知,
不等式2x2-9x+m≤0對x∈[2,3]總成立等價(jià)于
f(2)≤0
f(3)≤0
,
8-18+m≤0
18-27+m≤0

解得m≤9.
∴實(shí)數(shù)m的范圍是(-∞,9].
點(diǎn)評(píng):本題考查構(gòu)造函數(shù),利用函數(shù)的性質(zhì)解決不等式恒成立問題的方法和技巧,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,下列式子不正確的是( 。
A、a2=b2+c2-2bccosA
B、a:b:c=sinA:sinB:sinC
C、S△ABC=
1
2
|AB||BC|sinA
D、b=2RsinB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列各式按大小順序排列,其中正確的是( 。
A、cos0<cos
1
2
<cos1<cos30°
B、cos0<cos
1
2
<cos30°<cos1
C、cos0>cos
1
2
>cos1>cos30°
D、cos0>cos
1
2
>cos30°>cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中點(diǎn),F(xiàn)是PC的中點(diǎn).
(Ⅰ)求證:面PDE⊥面PAB;
(Ⅱ)求證:BF∥面PDE.
(Ⅲ)當(dāng)PA=AB時(shí),
①求直線PC與平面ABCD所成角的大。
②求二面角P-DE-A所成角的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法求228與1995的最大公約數(shù),并用更相減損術(shù)檢驗(yàn)?zāi)愕慕Y(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正△ABC的邊BC、CA、AB上分別取點(diǎn)P、Q、R,使CQ=2BP,AR=3BP.已知正三角形的邊長是11cm,BP=xcm,△PQR的面積為S
(1)用解析式將S表示成x的函數(shù);
(2)求S的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于正整數(shù)a及整數(shù)b、c,二次方程ax2+bx+c有兩個(gè)根α,β,滿足0<α<β<1,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=1,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知線性回歸方程
y
=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
②在進(jìn)制計(jì)算中,100(2)=11(3);
③若ξ~N(3,σ2),且P(0≤ξ≤3)=0.4,則P(ξ≥6)=0.1;
④“a=
1
0
1-x2
dx”是“函數(shù)y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤設(shè)函數(shù)f(x)=
2014x+1+2013
2014x+1
+2014sinx(x∈[-
π
2
,
π
2
])的最大值為M,最小值為m,則M+m=4027,
其中正確命題的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

同步練習(xí)冊答案