某單位建造一間背面靠墻的小房,地面面積為12m2,房屋正面每平方米的造價(jià)為1200元,房屋側(cè)面每平方米的造價(jià)為800元,屋頂?shù)脑靸r(jià)為5800元,如果墻高為3m,且不計(jì)房屋背面和地面的費(fèi)用,問(wèn)怎樣設(shè)計(jì)房屋能使總造價(jià)最低?最低總造價(jià)是多少?
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:設(shè)底面的長(zhǎng)為xm,寬ym,則y=
12
x
m.設(shè)房屋總造價(jià)為f(x),由題意可得f(x)=3x•1200+3×
12
x
×800×2+12×5800,利用基本不等式即可得出.
解答: 解:如圖所示,設(shè)底面的長(zhǎng)為xm,寬ym,則y=
12
x
m.
設(shè)房屋總造價(jià)為f(x),
由題意可得f(x)=3x•1200+3×
12
x
×800×2+12×5800=4800x+
12×3600
x
+58002
3600×12×4800
+5800=34600,當(dāng)且僅當(dāng)x=3時(shí)取等號(hào).
答:當(dāng)?shù)酌娴拈L(zhǎng)寬分別為3m,4m時(shí),可使房屋總造價(jià)最低,總造價(jià)是34600元.
點(diǎn)評(píng):本題考查了利用基本不等式解決實(shí)際問(wèn)題,確定函數(shù)關(guān)系式是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a-4i,z2=8+6i,
z1
z2
為純虛數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求復(fù)數(shù)z1的平方根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.
優(yōu)秀 非優(yōu)秀 總計(jì)
甲班 10
乙班 30
合計(jì) 105
已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=-x2+x在x=3附近的平均變化率,并求出在該點(diǎn)處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+3x2+9x-2
(Ⅰ)求f(x)的單調(diào)減區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-2,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式x2-(k+1)x-2k2+2k≤0(k∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)若a=2,求曲線y=f(x)在x=1處的切線方程;
(2)若a<
2
e2
,試判斷函數(shù)f(x)在x∈(1,e2)的零點(diǎn)個(gè)數(shù),并說(shuō)明你的理由;
(3)若f(x)有兩個(gè)相異零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x3-
x2
2
-2x+5<m,對(duì)一切x∈[-1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+sin(x+
2
),x∈R.
(1)求f(x)的最小正周期;
(2)若x∈(-
π
2
,π),求f(x)的值域;
(3)若f(α)=
1
5
,求sin2α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案