【題目】已知焦點在x軸的橢圓C:離心率e=,A是左頂點,E(2,0)
(1)求橢圓C的標準方程:
(2)若斜率不為0的直線l過點E,且與橢圓C相交于點P,Q兩點,求三角形APQ面積的最大值
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場的空調在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調的銷售量;
(2)若該商場的營銷部對空調進行新一輪促銷,對7月到12月有購買空調意愿的顧客進行問卷調查.假設該地擬購買空調的消費群體十分龐大,經(jīng)過營銷部調研機構對其中的500名顧客進行了一個抽樣調查,得到如下一份頻數(shù)表:
有購買意愿對應的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,等邊三角形PCD所在的平面垂直于底面ABCD,,M是棱PD的中點.
Ⅰ求證:平面PCD;
Ⅱ求三棱錐的體積;
Ⅲ過B做平面與平面PAD平行,設平面截四棱錐所得截面面積為S,試求S的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人作游戲,甲先在紙上任意寫下一個由L、R構成的長為的序列,然后乙將個質量互不相同的砝碼逐一放在天平上,每放一個砝碼(已放的砝碼不再拿下),乙都在紙上按順序寫一個字母:如果天平傾向左邊則寫L,否則寫R.當所有砝碼都放在天平上時,乙也寫下一個由L、R構成的長為的序列.規(guī)定:當乙寫的序列與甲寫的序列相同時乙勝,否則甲勝.試問:誰有必勝策略?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形中,,,,是EA的中點(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項能力(指標值滿分為5分,分值高者為優(yōu)),分別繪制了如圖所示的六維能力雷達圖,圖中點A表示甲的創(chuàng)造力指標值為4,點B表示乙的空間能力指標值為3,則下列敘述錯誤的是( )
A.甲的六大能力中推理能力最差B.甲的創(chuàng)造力優(yōu)于觀察能力
C.乙的計算能力優(yōu)于甲的計算能力D.乙的六大能力整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com