【題目】命題p:關(guān)于x的方程x2ax20無(wú)實(shí)根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實(shí)數(shù)a的取值范圍

【答案】(2,1][2,+)

【解析】

試題分析:首先判斷命題p,q為真命題時(shí)的對(duì)應(yīng)的a的取值范圍,由pq為假命題,pq真命題可知兩命題一真一假,分兩種情況討論可求得a的取值范圍

試題解析:方程x2ax20無(wú)實(shí)根,

∴△a28<0,2<a<2,p:-2<a<2.

函數(shù)f(x)logax(0,+)上單調(diào)遞增,a>1.

qa>1.pq為假,pq為真,pq一真一假.

當(dāng)pq假時(shí),-2<a1,當(dāng)pq真時(shí),a2.

綜上可知,實(shí)數(shù)a的取值范圍為(2,1][2,+)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是一個(gè)公差為d(d≠0)的等差數(shù)列,它的前10項(xiàng)和S10=110,且a1,a2,a4成等比數(shù)列。

(1)證明:a1=d;

(2)求公差d的值和數(shù)列{an}的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是不同的直線, 是不同的平面,已知,下列說(shuō)法正確的是 ( )

A. ,則 B. ,則

C. ,則 D. ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的焦距2,離心率為,上一點(diǎn)坐標(biāo)為

求該橢圓方程;

對(duì)于直線橢圓總存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,

實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其下列敘述正確的是( )

A. 滿足λ+μ=2的點(diǎn)P必為BC的中點(diǎn)

B. 滿足λ+μ=1的點(diǎn)P有且只有一個(gè)

C. λ+μ的最大值為3

D. λ+μ的最小值不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1axby+4=0l2:(a1x+y+b=0,分別求滿足下列條件的ab

1l1l2,且直線l1過(guò)點(diǎn)(31);

2l1l2,且直線l1在兩坐標(biāo)軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方形中,的中點(diǎn),將 沿折起,使得平面平面

(1)求證:;

(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在何位置時(shí),三棱錐的體積與四棱錐的體積之比為1:3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且首項(xiàng)a1≠3,an1Sn3nn∈N*).

1)求證:數(shù)列{Sn3n}是等比數(shù)列;

2)若{an}為遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案