【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)).以原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上的動點,過點且與垂直的直線交于點,求的最小值,并求此時點的直角坐標(biāo).
【答案】(1)曲線的普通方程為:;曲線的直角坐標(biāo)方程為:(2)的最小值為6,此時點的坐標(biāo)為
【解析】
(1)利用消參法,消去參數(shù),可把曲線的參數(shù)方程化為普通方程;通過極坐標(biāo)和直角坐標(biāo)的互化公式,可將曲線的極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)點是曲線上動點,由的參數(shù)方程可表示出點坐標(biāo),運用點到直線距離公式求到直線的距離,再運用輔助角公式化簡即可得出答案.
(1)由曲線,可得:
兩式兩邊平方相加可得:曲線的普通方程為:.
由曲線得:,
即,所以曲線的直角坐標(biāo)方程為:.
(2)由(1)知橢圓與直線無公共點,
橢圓上的點到直線的距離為
,
當(dāng)時,的最小值為,
此時的最小值為6,此時點的坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為降低霧霾等惡劣氣候?qū)用竦挠绊,某公司研發(fā)了一種新型防霧霾產(chǎn)品.每一臺新產(chǎn)品在進入市場前都必須進行兩種不同的檢測,只有兩種檢測都合格才能進行銷售,否則不能銷售.已知該新型防霧霾產(chǎn)品第一種檢測不合格的概率為,第二種檢測不合格的概率為,兩種檢測是否合格相互獨立.
(1)求每臺新型防霧霾產(chǎn)品不能銷售的概率;
(2)如果產(chǎn)品可以銷售,則每臺產(chǎn)品可獲利40元;如果產(chǎn)品不能銷售,則每臺產(chǎn)品虧損80元(即獲利元).現(xiàn)有該新型防霧霾產(chǎn)品3臺,隨機變量表示這3臺產(chǎn)品的獲利,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意及 恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,(是自然對數(shù)的底數(shù)),且,令().
(1)證明:;
(2)證明:是等比數(shù)列,且的通項公式是;
(3)是否存在常數(shù),對任意自然數(shù)均有成立?若存在,求的取值范圍,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該院派出研究小組分別到氣象局與某醫(yī)院,抄錄了1到6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
晝夜溫差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個) | 23 | 26 | 30 | 27 | 17 | 13 |
該研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰的兩個月的概率;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請根據(jù)2到5月份的數(shù)據(jù),求就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程:
(ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該研究小組所得的線性回歸方程是否理想?
(參考公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com