【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該院派出研究小組分別到氣象局與某醫(yī)院,抄錄了16月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見表:

月份

1

2

3

4

5

6

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(shù)(個(gè))

23

26

30

27

17

13

該研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是相鄰的兩個(gè)月的概率;

2)已知選取的是1月與6月的兩組數(shù)據(jù).

i)請(qǐng)根據(jù)25月份的數(shù)據(jù),求就診人數(shù)y關(guān)于晝夜溫差x的線性回歸方程:

ii)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該研究小組所得的線性回歸方程是否理想?

(參考公式

【答案】12)(iyii)該小組所得線性回歸方程是理想的.

【解析】

1)運(yùn)用列舉法與古典概型公式求解;

(2)(i)求出,代入公式求得,即可得線性回歸方程;(ii)借助與回歸方程分析探究即可.

1)設(shè)選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月為事件A,

因?yàn)閺?/span>6組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,

,每種情況都是等可能出現(xiàn)的,

其中選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的情況有5種,

所以

2,,

,

,

得到y關(guān)于x的回歸直線方程為y.

2)當(dāng)x10時(shí),y,

同樣,當(dāng)x6時(shí),y,

估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,

∴該小組所得線性回歸方程是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是是參數(shù)).以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

2)設(shè)為曲線上的動(dòng)點(diǎn),過點(diǎn)且與垂直的直線交于點(diǎn),求的最小值,并求此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x24ax+3a20a0),命題q:實(shí)數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實(shí)數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形,,邊的中點(diǎn),點(diǎn)在線段.

1)證明:平面平面;

2)若,平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi10個(gè)在區(qū)間[0,1]上的均勻隨機(jī)數(shù),其數(shù)據(jù)如下表的前兩行.

x

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

y

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

lnx

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個(gè)曲邊三角形面積的一個(gè)近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為(

①當(dāng)時(shí),函數(shù)的圖象的對(duì)稱中心為;

②當(dāng)時(shí),函數(shù)上為單調(diào)遞減函數(shù);

③若函數(shù)上不單調(diào),則;

④當(dāng)時(shí),上的最大值為15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類案件情況如表所示:

編號(hào)

項(xiàng)目

收案(件)

結(jié)案(件)

判決(件)

1

刑事案件

2400

2400

2400

2

婚姻家庭、繼承糾紛案件

3000

2900

1200

3

權(quán)屬、侵權(quán)糾紛案件

4100

4000

2000

4

合同糾紛案件

14000

13000

n

其中結(jié)案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問題.

(Ⅰ)在編號(hào)為1、23的收案案件中隨機(jī)取1件,求該件是結(jié)案案件的概率;

(Ⅱ)在編號(hào)為2的結(jié)案案件中隨機(jī)取1件,求該件是判決案件的概率;

(Ⅲ)在編號(hào)為1、2、3的三類案件中,判決案件數(shù)的平均數(shù)為,方差為S12,如果表中n,表中全部(4類)案件的判決案件數(shù)的方差為S22,試判斷S12S22的大小關(guān)系,并寫出你的結(jié)論(結(jié)論不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案