【題目】對某校高二年級800名學生上學期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結(jié)果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
問:(1)由題意列出學生語文成績與外語成績關(guān)系的列聯(lián)表:
語文優(yōu)秀 | 語文不優(yōu)秀 | 總計 | |
外語優(yōu)秀 | |||
外語不優(yōu)秀 | |||
總計 |
(2)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關(guān)系?(保留三位小數(shù))
(附:)
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中.函數(shù)的圖像在點處的切線與函數(shù)的圖像在點處的切線互相垂直.
(Ⅰ)求的值;
(Ⅱ)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右焦點分別為、,點為橢圓上任意一點,關(guān)于原點的對稱點為,有,且的最大值.
(1)求橢圓的標準方程;
(2)若是關(guān)于軸的對稱點,設點,連接與橢圓相交于點,直線與軸相交于點,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學生的“讀書迷”中抽取8名進行集訓,從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為及以上的花苗為優(yōu)質(zhì)花苗.
求圖中的值,并求綜合評分的中位數(shù).
用樣本估計總體,以頻率作為概率,若在兩塊試驗地隨機抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;
填寫下面的列聯(lián)表,并判斷是否有的把握認為優(yōu)質(zhì)花苗與培育方法有關(guān).
附:下面的臨界值表僅供參考.
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在高中學習過程中,同學們經(jīng)常這樣說:“數(shù)學物理不分家,如果物理成績好,那么學習數(shù)學就沒什么問題!蹦嘲噌槍Α案咧猩锢韺W習對數(shù)學學習的影響”進行研究,得到了學生的物理成績與數(shù)學成績具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機抽取5位學生在一次考試中的數(shù)學和物理成績,如下表:
(1)求數(shù)學成績y對物理成績x的線性回歸方程。若某位學生的物理成績?yōu)?0分,預測他的數(shù)學成績;
(2)要從抽取的這5位學生中隨機抽取2位參加一項知識競賽,求選中的學生的數(shù)學成績至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小學舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,為短軸的一個端點且(其中為坐標原點).
(1)求橢圓的方程;
(2)若、 分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線、的交點,若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com