【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)f(x)的解析式為 .
(1)求當(dāng)x<0時(shí)函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).
【答案】解:(1)當(dāng)x<0時(shí),﹣x>0,
∵當(dāng)x>0時(shí),函數(shù)f(x)的解析式為,
∴f(﹣x)=﹣1=﹣﹣1,
由偶函數(shù)可知當(dāng)x<0時(shí),f(x)=f(﹣x)=﹣﹣1;
(2)設(shè)x1 , x2是(0,+∞)上任意兩個(gè)實(shí)數(shù),且x1<x2 ,
則f(x1)﹣f(x2)=﹣1﹣+1=,
由x1 , x2的范圍和大小關(guān)系可得f(x1)﹣f(x2)=>0,
∴f(x1)>f(x2),故f(x)在(0,+∞)上的是減函數(shù)
【解析】(1)當(dāng)x<0時(shí),﹣x>0,整體代入已知式子由偶函數(shù)可得;
(2)設(shè)x1 , x2是(0,+∞)上任意兩個(gè)實(shí)數(shù),且x1<x2 , 作差判斷f(x1)﹣f(x2)的符號可得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有 .(填上所有正確命題的序號)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④異面直線PM與BD所成的角為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點(diǎn).
(I)求證:PE⊥CD;
(II)求PC與平面PDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過變換后得曲線.
(1)求的方程;
(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為且,求直線被圓截得弦長的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當(dāng)a=l時(shí),確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com