如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問M,F,Q是否共線,若共線請證明;反之說明理由.
(Ⅰ) ; (Ⅱ)參考解析

試題分析:(Ⅰ)因?yàn)橛医裹c(diǎn)為F(2,0),所以可得c=2,又因?yàn)檫^x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且的最大值為.所以.再利用橢圓中的關(guān)系式.即可求出b的值,從而可得結(jié)論.
(Ⅱ)假設(shè).通過以及點(diǎn)在橢圓上,消去.即可得一個(gè)用表示的一個(gè)等式.又由于.通過對比向量即可得結(jié)論.
試題解析:(1)由題意可知:,則,,從而,故所求橢圓的方程為.                   5分
(2)解:三點(diǎn)共線.
證明:由已知得方程組
注意到,解得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240331578081037.png" style="vertical-align:middle;" />,所以
,

,所以,從而三點(diǎn)共線。            12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,點(diǎn),過的直線交拋物線兩點(diǎn).
(1)若,拋物線的焦點(diǎn)與中點(diǎn)的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)關(guān)于軸的對稱點(diǎn)為,求證:直線過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
對稱點(diǎn)為A1.求證:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)在拋物線上.
(1)若的三個(gè)頂點(diǎn)都在拋物線上,記三邊,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個(gè)頂點(diǎn)都在拋物線上,記四邊,所在直線的斜率分別為,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過點(diǎn)
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:對于兩個(gè)雙曲線,,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
(3)求值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)且和拋物線相切的直線方程為                  .

查看答案和解析>>

同步練習(xí)冊答案