已知拋物線,點(diǎn),過(guò)的直線交拋物線兩點(diǎn).
(1)若,拋物線的焦點(diǎn)與中點(diǎn)的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過(guò)定點(diǎn)
(1);(2)參考解析

試題分析:(1)由題意可得通過(guò)假設(shè)直線方程聯(lián)立拋物線方程,消去y可得一個(gè)一元二次方程,通過(guò)韋達(dá)定理寫出根與系數(shù)的關(guān)系.由中點(diǎn)的橫坐標(biāo)等于拋物線的焦點(diǎn)坐標(biāo)的橫坐標(biāo)可解出直線的斜率k的值.即可求出直線方程.
(2)由直線方程與拋物線的方程聯(lián)立可得,關(guān)于點(diǎn)A,B的坐標(biāo)關(guān)系,從而得到的坐標(biāo),寫出直線B的方程.由于其中含有A,B的坐標(biāo)值,通過(guò)整理成為的形式即可知道,直線恒過(guò)定點(diǎn).
試題解析:(1)解:由已知,拋物線的焦點(diǎn)坐標(biāo)為.
設(shè)過(guò)點(diǎn)的直線的方程為
  得.
設(shè),,則.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034156786302.png" style="vertical-align:middle;" />與中點(diǎn)的連線垂直于軸,所以,即.
解得 ,.
所以,直線的方程為.
(2)證明:設(shè)直線的方程為.
 得,
,且,即,且.
.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034157098412.png" style="vertical-align:middle;" />關(guān)于軸對(duì)稱,所以,直線,
,,所以
所以 .
因?yàn)?,又同號(hào),
所以 ,
所以直線的方程為
所以,直線恒過(guò)定點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)A,B分別是直線yxy=-x上的動(dòng)點(diǎn),且|AB|=,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)過(guò)點(diǎn)(,0)作兩條互相垂直的直線l1,l2,直線l1l2與點(diǎn)P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點(diǎn)分別為M,N,求證:直線MN恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合), 試問(wèn):直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說(shuō)明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)一個(gè)焦點(diǎn)為,且離心率的橢圓上下兩頂點(diǎn)分別為,直線交橢圓兩點(diǎn),直線與直線交于點(diǎn).
(1)求橢圓的方程;
(2)求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過(guò)x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問(wèn)M,F,Q是否共線,若共線請(qǐng)證明;反之說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1=1,橢圓C2C1的短軸為長(zhǎng)軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線l與橢圓C2相交于不同的兩點(diǎn)A、B,已知A點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案