【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦×矢+矢2).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗公式計算所得弧田面積與實際面積之間存在誤差.現(xiàn)有圓心角為π,弦長等于9米的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得弧田面積與實際面積的差為

【答案】9π﹣
【解析】解:扇形半徑r=3
扇形面積等于=9π(m2
弧田面積=9π﹣(m2
圓心到弦的距離等于r,所以矢長為r.
按照上述弧田面積經(jīng)驗公式計算得(弦×矢+矢2)=

按照弧田面積經(jīng)驗公式計算結(jié)果比實際少9π﹣平方米.
故答案為:9π﹣
利用扇形的面積公式,計算扇形的面積,從而得到弧田的實際面積;按照上述弧田面積經(jīng)驗公式計算得(弦×矢+矢2),進而可求誤差.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在梯形BCDE中,BC∥DE,BA⊥DE,且EA=DA=AB=2CB=2,沿AB將四邊形ABCD折起,使得平面ABCD與平面ABE垂直,M為CE的中點.
(1)求證:AM⊥BE;
(2)求三棱錐C﹣BED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差大于零的等差數(shù)列的前項和為,且

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設(shè),為數(shù)列的前項和,是否存在正整數(shù),使得任意的成立若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x+λ3﹣x(λ∈R).
(1)當λ=﹣4時,求函數(shù)f(x)的零點;
(2)若函數(shù)f(x)為偶函數(shù),求實數(shù)λ的值;
(3)若不等式f(x)≤6在x∈[0,2]上恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中,則該三棱錐體積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形的三個頂點的坐標為, , .

(1)求平行四邊形的頂點的坐標;

(2)在中,求邊上的高所在直線方程;

(3)求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(2)若函數(shù)的圖象與直線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個對應(yīng):如圖,其構(gòu)成映射的是(

A.只有①②
B.只有①④
C.只有①③④
D.只有③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

同步練習冊答案