試比較
1+a
-1和
a
的大小.
考點:不等式比較大小
專題:不等式的解法及應用
分析:平方作差即可得出.
解答: 解:∵a≥0,
1+a
-1≥0.
(
1+a
-1)2-(
a
)2

=1+a+1-2
1+a
-a
=2(1-
1+a
)

∵a≥0,∴1≤
1+a
,
1+a
-1≤
a
點評:本題考查了“平方作差法”比較數(shù)的大小,考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
sinxcosx
sinx-cosx+1
(0<x<π)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對大于1的自然數(shù)m的三次冪可用奇數(shù)進行以下方式的“分裂”:23
3
5
,33
7
9
11
,43
13
15
17
19
,…仿此,若m3的“分裂”數(shù)中有一個是73,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x2cosα+y2sinα+1=0(α∈(0,2π))表示一個圓,則( 。
A、0<α<
π
2
B、π<α<
2
C、α=
π
4
D、α=
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,若z(1+3i)=i,則z的虛部為(  )
A、
1
10
B、-
1
10
C、
i
10
D、-
i
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2≥1},B={x|y=
1-log2x
},則A∩∁RB=( 。
A、(2,+∞)
B、(-∞,-1]∪(2,+∞)
C、(-∞,-1)∪(2,+∞)
D、[-1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABCD,底面ABCD是直角梯形,AB⊥AD,AB=AD,CD=2AB,E為PC中點.若PB與平面ABCD所成的角為45°
(1)求異面直線PD與BE所成角的大小;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是拋物線x2=2py(p>0)上的動點,P到拋物線焦點的距離比到x軸的距離大1.
(1)求該拋物線的方程;
(2)如圖,C,D是y軸正半軸上的兩個不同的點,直線PC,PD分別交拋物線于另外一點G,H,作直線GH的平行線l與拋物線相切,切點為Q,求證:△PCQ與△PDQ的面積相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合F={x|x=kπ+
π
6
,k∈Z}∪{x|x=kπ+
5
6
π,k∈Z},G={x|x=
3
+
π
6
,k∈Z},則集合F和G之間的關系為
 

查看答案和解析>>

同步練習冊答案