設(shè)集合F={x|x=kπ+
π
6
,k∈Z}∪{x|x=kπ+
5
6
π,k∈Z},G={x|x=
3
+
π
6
,k∈Z},則集合F和G之間的關(guān)系為
 
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:在集合G中,將k分為3m、3m-1、3m-2(其中m∈Z)三種情況分析,從而可得兩集合的關(guān)系.
解答: 解:對于集合G,當(dāng)k=3m(m∈Z)時(shí),x=mπ+
π
6
,k∈Z,此時(shí)G={x|x=kπ+
π
6
,k∈Z};
當(dāng)k=3m-1(m∈Z)時(shí),x=mπ-
π
6
=(m-1)π+
5
6
π
,k∈Z,此時(shí)G={x|x=kπ+
5
6
π,k∈Z};
當(dāng)k=3m-2(m∈Z)時(shí),x=mπ-
π
2
,k∈Z.
∴F⊆G.
故答案為:F⊆G.
點(diǎn)評:本題考查集合間的關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

試比較
1+a
-1和
a
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是AB,BC,CC1的中點(diǎn),求EF與BG所成角的度數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin2x+bsinxcosx滿足f(
π
6
)=f(
2
)=2

(1)求實(shí)數(shù)a,b的值以及函數(shù)f(x)的最小正周期;
(2)記g(x)=f(x+t),若函數(shù)g(x)是偶函數(shù),求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{bn}滿足a1=
1
2
,2nan+1=(n+1)•an,且bn=ln(1+an)+
1
2
a2n,n∈N*
(1)求a2,a3,a4,并求數(shù)列{an}的通項(xiàng)公式
(2)對一切的n∈N*,求證:
2
an+2
an
bn
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)+
a
2
x2-x(a≥0).
(1)若f(x)>0對x∈(0,+∞)都成立,求a的取值范圍;
(2)已知e為自然對數(shù)的底數(shù),證明:?n∈N*
e
<(1+
1
n2
)(1+
2
n2
)…(1+
n
n2
)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,函數(shù)f(x)=x2-mx+m.
(1)若存在x使得f(x)<0,求m的取值范圍;
(2)若實(shí)x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=
1
2
[f(x1)+f(x2)]至少有一個(gè)實(shí)根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosx=
1-m
2m+3
有根,則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=x2-2ax+6是偶函數(shù),則a的值是
 

查看答案和解析>>

同步練習(xí)冊答案