分析 (Ⅰ)拋物線的標(biāo)準(zhǔn)方程是y2=6x,焦點(diǎn)在x軸上,開口向右,2p=6,即可求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,
(Ⅱ)先根據(jù)題意給出直線l的方程,代入拋物線,求出兩交點(diǎn)的橫坐標(biāo)的和,然后利用焦半徑公式求解即可.
解答 解:(Ⅰ)拋物線的標(biāo)準(zhǔn)方程是y2=6x,焦點(diǎn)在x軸上,開口向右,2p=6,∴$\frac{p}{2}$=$\frac{3}{2}$,
∴拋物線的焦點(diǎn)坐標(biāo)($\frac{3}{2}$,0),準(zhǔn)線方程x=-$\frac{3}{2}$;
(Ⅱ)∵直線l過(guò)已知拋物線的焦點(diǎn)且傾斜角為45°,
∴直線l的方程為y=x-$\frac{3}{2}$,
代入拋物線y2=6x化簡(jiǎn)得x2-9x+$\frac{9}{4}$=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=9,
所以|AB|=x1+x2+p=9+3=12.
故所求的弦長(zhǎng)為12.
點(diǎn)評(píng) 本題考查了直線與拋物線的位置關(guān)系中的弦長(zhǎng)問(wèn)題,因?yàn)槭沁^(guò)焦點(diǎn)的弦長(zhǎng)問(wèn)題,所以利用了焦半徑公式.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π+4 | B. | $4π+\frac{4}{3}$ | C. | 2π+4 | D. | $2π+\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|-1<x<1} | C. | {x|x≥1或x≤-1} | D. | {x|x>1或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 1 | C. | $\sqrt{3}$ | D. | -1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com