【題目】甲乙兩名籃球運(yùn)動(dòng)員分別在各自不同的5場(chǎng)比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運(yùn)動(dòng)員在各自5場(chǎng)比賽所得平均籃板球數(shù)均為10.
(1)求x,y的值;
(2)求甲乙所得籃板球數(shù)的方差和,并指出哪位運(yùn)動(dòng)員籃板球水平更穩(wěn)定;
(3)教練員要對(duì)甲乙兩名運(yùn)動(dòng)員籃板球的整體水平進(jìn)行評(píng)估.現(xiàn)在甲乙各自的5場(chǎng)比賽中各選一場(chǎng)進(jìn)行評(píng)估,則兩名運(yùn)動(dòng)員所得籃板球之和小于18的概率.
【答案】(1)x=2,y=9;(2),乙更穩(wěn)定;(3).
【解析】
(1)利用平均數(shù)求出x,y的值;(2)求出甲乙所得籃板球數(shù)的方差和,判斷哪位運(yùn)動(dòng)員籃板球水平更穩(wěn)定;(3)利用古典概型的概率求兩名運(yùn)動(dòng)員所得籃板球之和小于18的概率.
(1)由題得,
.
(2)由題得,
.
因?yàn)?/span>,所以乙運(yùn)動(dòng)員的水平更穩(wěn)定.
(3)由題得所有的基本事件有(8,8),(8,9),(8,10),(8,11),(8,12),(7,8),(7,9),(7,10),(7,11),(7,12),(10,8),(10,9),(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(13,8),(13,9),(13,10),(13,11),(13,12).共25個(gè).
兩名運(yùn)動(dòng)員所得籃板球之和小于18的基本事件有(8,8),(8,9),(7,8),(7,9),(7,10),共5個(gè),
由古典概型的概率公式得兩名運(yùn)動(dòng)員所得籃板球之和小于18的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和.
【答案】(1)(2)
【解析】
(1)將已知兩式作差,利用等比數(shù)列的通項(xiàng)公式,可得公比,由等比數(shù)列的求和可得首項(xiàng),進(jìn)而得到所求通項(xiàng)公式;(2)求得bn=n,,由裂項(xiàng)相消求和可得答案.
(1)等比數(shù)列的前項(xiàng)和為,公比,①,
②.
②﹣①,得,則,
又,所以,
因?yàn)?/span>,所以,
所以,
所以;
(2),
所以前項(xiàng)和.
【點(diǎn)睛】
裂項(xiàng)相消法適用于形如(其中是各項(xiàng)均不為零的等差數(shù)列,c為常數(shù))的數(shù)列. 裂項(xiàng)相消法求和,常見的有相鄰兩項(xiàng)的裂項(xiàng)求和,還有一類隔一項(xiàng)的裂項(xiàng)求和,如或.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的圖象上有兩點(diǎn),.函數(shù)滿足,且.
(1)求證:;
(2)求證:;
(3)能否保證和中至少有一個(gè)為正數(shù)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB=60°,AC∩BD=O,點(diǎn)P在底面的射影為點(diǎn)O,PO=3,點(diǎn)E為線段PD中點(diǎn).
(1)求證:PB∥平面AEC;
(2)若點(diǎn)F為側(cè)棱PA上的一點(diǎn),當(dāng)PA⊥平面BDF時(shí),試確定點(diǎn)F的位置,并求出此時(shí)幾何體F﹣BDC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,…,則在這個(gè)新數(shù)列中,由1開始的第2 019個(gè)數(shù)是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為改善居民的生活環(huán)境,政府?dāng)M將一公園進(jìn)行改造擴(kuò)建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設(shè)計(jì)要求,以居民小區(qū)和圓弧上點(diǎn)為線段向半圓外作等腰直角三角形(為直角頂點(diǎn)),使改造后的公園成四邊形,如圖所示.
(1)若時(shí),與出入口的距離為多少米?
(2)設(shè)計(jì)在什么位置時(shí),公園的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸的正半軸相交于A,B兩點(diǎn)(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點(diǎn)P滿足PA2+PB2+PT2=12,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如果圓C上存在E,F(xiàn)兩點(diǎn),使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸和200噸,如果A產(chǎn)品的利潤(rùn)為300元/噸,B產(chǎn)品的利潤(rùn)為200元/噸,則該顏料公司一天之內(nèi)可獲得的最大利潤(rùn)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面四個(gè)推理:
①由“若是實(shí)數(shù),則”推廣到復(fù)數(shù)中,則有“若是復(fù)數(shù),則”;
②由“在半徑為R的圓內(nèi)接矩形中,正方形的面積最大”類比推出“在半徑為R的球內(nèi)接長(zhǎng)方體中,正方體的體積最大”;
③以半徑R為自變量,由“圓面積函數(shù)的導(dǎo)函數(shù)是圓的周長(zhǎng)函數(shù)”類比推出“球體積函數(shù)的導(dǎo)函數(shù)是球的表面積函數(shù)”;
④由“直角坐標(biāo)系中兩點(diǎn)、的中點(diǎn)坐標(biāo)為”類比推出“極坐標(biāo)系中兩點(diǎn)、的中點(diǎn)坐標(biāo)為”.
其中,推理得到的結(jié)論是正確的個(gè)數(shù)有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標(biāo)系O—xyz.
(1)若t=1,求異面直線AC1與A1B所成角的大。
(2)若t=5,求直線AC1與平面A1BD所成角的正弦值;
(3)若二面角A1—BD—C的大小為120°,求實(shí)數(shù)t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com