【題目】為改善居民的生活環(huán)境,政府擬將一公園進行改造擴建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設計要求,以居民小區(qū)和圓弧上點為線段向半圓外作等腰直角三角形(為直角頂點),使改造后的公園成四邊形,如圖所示.
(1)若時,與出入口的距離為多少米?
(2)設計在什么位置時,公園的面積最大?
【答案】(1)(2)
【解析】
(1)設,在中可表示,進而可表示,則在在中利用余弦定理即可得解.
(2)設∠AOB=α,利用余弦定理得到以及三角形的面積公式得到關(guān)于α的面積表達式,結(jié)合三角函數(shù)求最值.
解:(1)設則在中在中
則米
(2)如圖,設∠AOB=α,則AB2=OB2+OA2﹣2OB×OA×cosα=50000﹣40000cosα,
又12500﹣10000cosα,又200×100sinα=10000sinα,
∴S四邊形OACB=S△ABC+S△AOB=12500﹣10000cosα+10000sinα=10000(sinα﹣cosα)+12500=10000sin()+12500,
∴當sin()=1,即時,四邊形OACB面積最大為(1000012500)m2.
科目:高中數(shù)學 來源: 題型:
【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷錯誤的是
A. 若隨機變量服從正態(tài)分布,則;
B. 若組數(shù)據(jù)的散點都在上,則相關(guān)系數(shù);
C. 若隨機變量服從二項分布: , 則;
D. 是的充分不必要條件;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(0)=0,對于任意x∈R,都有f(x)≥x,且,令g(x)=f(x)﹣|λx﹣1|(λ>0).
(1)求函數(shù)f(x)的表達式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當λ>2時,判斷函數(shù)g(x)在區(qū)間(0,1)上的零點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某重點中學100位學生在市統(tǒng)考中的理科綜合分數(shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分數(shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分數(shù)為, , , 的四組學生中,用分層抽樣的方法抽取11名學生,則理科綜合分數(shù)在的學生中應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數(shù)均為10.
(1)求x,y的值;
(2)求甲乙所得籃板球數(shù)的方差和,并指出哪位運動員籃板球水平更穩(wěn)定;
(3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現(xiàn)在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】保險公司統(tǒng)計的資料表明:居民住宅區(qū)到最近消防站的距離x(單位:千米)和火災所造成的損失數(shù)額y(單位:千元)有如下的統(tǒng)計資料:
距消防站距離x(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
火災損失費用y(千元) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計資料表明y與x有線性相關(guān)關(guān)系,試求:
(Ⅰ)求相關(guān)系數(shù)(精確到0.01);
(Ⅱ)求線性回歸方程(精確到0.01);
(III)若發(fā)生火災的某居民區(qū)與最近的消防站相距10.0千米,評估一下火災的損失(精確到0.01).
參考數(shù)據(jù):,,,
,,
參考公式:相關(guān)系數(shù) ,回歸方程 中斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com