【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

為定義在上的“局部奇函數(shù)”;

曲線軸交于不同的兩點;

為假命題, 為真命題,求的取值范圍.

【答案】

【解析】試題分析:首先根據(jù)已知條件并結合換元法和二次函數(shù)在區(qū)間上的最值以及一元二次方程根的情況分別求出命題為真命題時所滿足的的取值范圍,然后根據(jù)已知條件可知命題中一個為真命題,一個為假命題,并利用補集的思想求出的取值范圍.

試題解析:若p為真,則由于的局部奇函數(shù),從而,即上有解,令,則,又上遞減,在上遞增,從而,得,故有. 為真,則有,得. 又由為假命題,為真命題,則一真一假;若假,則,得無交集;若真,則,得,綜上知的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在研究色盲與性別的關系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個女性中6人患色盲. 

(Ⅰ)根據(jù)題中數(shù)據(jù)建立一個的列聯(lián)表;

(Ⅱ)在犯錯誤的概率不超過0.001的前提下,能否認為“性別與患色盲有關系”?

附:參考公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在透明塑料制成的長方體容器內(nèi)灌進一些水(未滿),現(xiàn)將容器底面一邊固定在底面上,再將容器傾斜,隨著傾斜度的不同,有下列四種說法:

①水的部分始終呈棱柱狀;

②水面四邊形的面積為定值;

③棱始終與水面平行;

④若, ,則是定值.

則其中正確命題的個數(shù)的是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足

1)求

2)求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某校高一(1)班全體男生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分,據(jù)此解答如下問題:

(1)求該班全體男生的人數(shù)及分數(shù)在之間的男生人數(shù);

(2)根據(jù)頻率分布直方圖,估計該班全體男生的數(shù)學平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(3)從分數(shù)在中抽取兩個男生,求抽取的兩男生分別來自、的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1,求函數(shù)的單調(diào)區(qū)間;

2若關于的不等式上有解,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若是奇函數(shù),且在區(qū)間上是增函數(shù),求的值;

(Ⅱ)設,若在區(qū)間內(nèi)有兩個不同的零點, ,求的取值范圍,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】方程有兩個不等的負根, 方程無實根,若“”為真,“”為假,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案