【題目】已知函數(shù),.
若恒成立,求的取值范圍;
已知,是函數(shù)的兩個(gè)零點(diǎn),且,求證:.
【答案】(1)(2)見解析
【解析】試題分析:構(gòu)造,求導(dǎo),算單調(diào)性,取最值情況法一:聯(lián)立方程組求解轉(zhuǎn)化為證明,設(shè),求導(dǎo)證明結(jié)論;法二:要證,只需證,由單調(diào)性只需證,令證明結(jié)論
解析:令,有,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,在處取得最大值,為,
若恒成立,則即.
方法一:,,
,
即
,
欲證:,只需證明,只需證明,
只需證明.
設(shè),則只需證明,
即證:.
設(shè),,
在單調(diào)遞減,,
,所以原不等式成立.
方法二:由(1)可知,若函數(shù) 有兩個(gè)零點(diǎn),有,則,且,
要證,只需證,由于在上單調(diào)遞減,從而只需證,由,
只需證,
又,
即證
即證,.
令,,
有在上單調(diào)遞增,,.
所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大連市某企業(yè)為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
根據(jù)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
已知這種產(chǎn)品的年利潤(rùn)與、的關(guān)系為.根據(jù)的結(jié)果回答下列問(wèn)題:
年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,超市中的某種小商品在過(guò)去的近40天的日銷售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷售量近似滿足,價(jià)格近似滿足。
(1)寫出該商品的日銷售額(單位:元)與時(shí)間()的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷售額=銷售量商品價(jià)格);
(2)求該種商品的日銷售額的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓的直徑,為圓心,,為半圓上的點(diǎn).
(Ⅰ)請(qǐng)你為點(diǎn)確定位置,使的周長(zhǎng)最大,并說(shuō)明理由;
(Ⅱ)已知,設(shè),當(dāng)為何值時(shí),
(ⅰ)四邊形的周長(zhǎng)最大,最大值是多少?
(ⅱ)四邊形的面積最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),若在區(qū)間上無(wú)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓短軸的兩個(gè)端點(diǎn)與點(diǎn)構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),試問(wèn)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出的坐標(biāo),并求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義函數(shù)(其中為自變量,為常數(shù)).
(Ⅰ)若當(dāng)時(shí),函數(shù)的最小值為-1,求實(shí)數(shù)的值;
(Ⅱ)設(shè)全集,已知集合,,若集合,滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com