3
cot77°+
3
tan197°+tan13°cot73°的值為( 。
A、
1
2
B、
3
2
C、1
D、
3
3
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:逆用兩角和的正切公式:tanα+tanβ=tan(α+β)(1-tanαtanβ)即可求得答案.
解答: 解:∵
3
cot77°+
3
tan197°+tan13°cot73°=
3
tan13°+
3
tan17°+tan13°tan13°
=
3
(tan13°+tan17°)+tan13°tan17°,
∵tan30°=tan(13°+17°)=
tan13°+tan17°
1-tan13°tan17°
=
3
3
,
3
(tan13°+tan17°)=1-tan13°tan17°,
∴tan13°tan17°+
3
(tan13°+tan17°)=1.
故選C.
點(diǎn)評(píng):本題考查兩角和的正切,逆用公式是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin2x,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及圖象的對(duì)稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
lnx的反函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+bx+c是定義在[-2a,a+1]的偶函數(shù),則a-b=(  )
A、-1
B、1
C、0
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-3y+k=0與直線9y=9kx+1沒有公共點(diǎn),則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos30°,則 f′(x)的值為( 。
A、-
1
2
B、
1
2
C、-
3
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值:
(1)lg2+lg5+lg30-lg3;            
(2)100+27 
1
3
-16 
1
2
+
30.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖框圖輸出的S為( 。
A、15B、17C、26D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱臺(tái)的一條側(cè)棱所在的直線與不含這條側(cè)棱的側(cè)面所在平面的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案