精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,已知點,動點軸上的正射影為點,且滿足直線.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)當時,求直線的方程.
(Ⅰ));(Ⅱ)

試題分析:(Ⅰ)屬直接法求軌跡問題,再根據列式子時,可根據直線垂直斜率相乘等于列出方程,但需注意斜率存在與否的問題,還可轉化為向量垂直問題,用數量積為0列出方程(因此法不用討論故常選此法解決直線垂直問題)。因點不能與原點重合故。(Ⅱ)即直線的傾斜角為。故可求出直線的斜率,由點斜式可求直線的方程。
試題解析:解:(Ⅰ)設,則,,.        2分
因為 直線,
所以 ,即.                       4分
所以 動點的軌跡C的方程為).                5分
(Ⅱ)當時,因為,所以.
所以 直線的傾斜角為.
當直線的傾斜角為時,直線的方程為;      8分
當直線的傾斜角為時,直線的方程為.     10分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知頂點是坐標原點,對稱軸是軸的拋物線經過點
(1)求拋物線的標準方程;
(2)直線過定點,斜率為,當為何值時,直線與拋物線有公共點?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.

(Ⅰ)求橢圓的方程;
(Ⅱ)設點是橢圓在第一象限上的任一點,連接,過點作斜率為的直線,使得與橢圓有且只有一個公共點,設直線的斜率分別為,,試證明為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作,設于點,
證明:當點在橢圓上移動時,點在某定直線上.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知點及直線,曲線是滿足下列兩個條件的動點的軌跡:①其中到直線的距離;②
(1) 求曲線的方程;
(2) 若存在直線與曲線、橢圓均相切于同一點,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的左、右頂點分別為,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且,求直線MN的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定點A (p為常數,p>0),Bx軸負半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點Gy軸上.

(1)求動點M的軌跡C的方程;
(2)設EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當p=2時,求|EF|的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線與曲線的交點個數是      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過橢圓的左頂點的斜率為的直線交橢圓于另一個點,且點軸上的射影恰好為右焦點,若,則橢圓離心率的取值范圍是_____________.

查看答案和解析>>

同步練習冊答案