已知橢圓方程為
x2
9
+
y2
4
=1
,直線(xiàn)l的方程為:y=mx+m,則l與橢圓的位置關(guān)系為( 。
分析:直線(xiàn)l恒過(guò)定點(diǎn),且定點(diǎn)在橢圓的內(nèi)部,由此可得結(jié)論.
解答:解:∵直線(xiàn)l的方程為:y=mx+m,∴直線(xiàn)l恒過(guò)定點(diǎn)(-1,0)
(-1)2
9
+
02
4
<1

∴(-1,0)在橢圓的內(nèi)部
∴l(xiāng)與橢圓恒相交
故選C.
點(diǎn)評(píng):本題考查直線(xiàn)與橢圓的位置關(guān)系,確定直線(xiàn)過(guò)定點(diǎn),且定點(diǎn)在橢圓的內(nèi)部,即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
9
+
y2
4
=1
及點(diǎn)M(1,1).
(1)直線(xiàn)l過(guò)點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求當(dāng)點(diǎn)M為弦AB中點(diǎn)時(shí)的直線(xiàn)l方程;
(2)直線(xiàn)l過(guò)點(diǎn)M與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡;
(3)(文)斜率為2的直線(xiàn)l與橢圓E相交于A,B兩點(diǎn),求弦AB的中點(diǎn)軌跡.
(3)(理)若橢圓E上存在兩點(diǎn)A,B關(guān)于直線(xiàn)l:y=2x+m對(duì)稱(chēng),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程
x2
9
+
y2
5
=1
,點(diǎn)F1(2,0),A(1,1),P為橢圓上任意一點(diǎn),則|PA|+|PF1|的取值范圍是
[6-
10
,6+
10
]
[6-
10
,6+
10
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓G的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率為
3
2
,且橢圓G上一點(diǎn)到其兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓方程為
x2
9
+
y2
4
=1
,直線(xiàn)l的方程為:y=mx+m,則l與橢圓的位置關(guān)系為( 。
A.相離B.相切C.相交D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案