【題目】設(shè)命題p:關(guān)于x的二次方程x2+(a+1)x+a-2=0的一個(gè)根大于零,另一根小于零;命題q:不等式2x2+x>2+ax對(duì)x∈(-∞,-1)恒成立.如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
【答案】(-∞,1)∪[2,+∞).
【解析】試題分析:對(duì)于命題:令,由于關(guān)于的二次方程的一個(gè)根大于零,另一根小于零,可得;對(duì)于命題:由于,由不等式可得: ,利用函數(shù)的單調(diào)性即可得出的取值范圍;由于命題“”為真命題,命題“”為假命題,可得與必然一真一假.
試題解析:令,∵二次方程的一個(gè)根大于零,另一根小于零,∴,即,∴,∴命題為真時(shí),有,∵,∴由不等式,可得,令,∴,∴在單調(diào)遞增,且,∴,又不等式對(duì)恒成立,∴命題為真時(shí),有,依題意,命題“”為真命題,命題“”為假命題,則有①若真假,得;②若假真,得,綜上可得,所求實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)選修4-2:矩陣與變換
求矩陣的特征值和特征向量.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程(是參數(shù)),若圓與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>A的函數(shù)f(x),若對(duì)任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數(shù)f(x)為“定義域上的M函數(shù)”,給出以下五個(gè)函數(shù):
①f(x)=2x+3,x∈R;②f(x)=x2,x∈;③f(x)=x2+1,x∈;④f(x)=sin x,x∈;⑤f(x)=log2x,x∈[2,+∞).
其中是“定義域上的M函數(shù)”的有( )
A. 2個(gè) B. 3個(gè)
C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),設(shè),若有兩個(gè)相異零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的五面體中, , , ,四邊形是正方形,二面角的大小為.
(1)在線段上找出一點(diǎn),使得平面,并說(shuō)明理由;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)時(shí),求在上的單調(diào)區(qū)間;
(2)且, 均恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論錯(cuò)誤的是( )
A. 命題“若x2-3x-4=0,則x=4”的逆否命題是“若x≠4,則x2-3x-4≠0”
B. 命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
C. “x=4”是“x2-3x-4=0”的充分條件
D. 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;
(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com