6.已知函數(shù)$f(x)=\frac{a}{x}-1+lnx$,若存在x0>0,使得f(x0)≤0有解,則實數(shù)a的取值范圍是( 。
A.(2,+∞)B.(-∞,3)C.(-∞,1]D.[3,+∞)

分析 利用參數(shù)分離法進行轉(zhuǎn)化,構(gòu)造函數(shù)求出函數(shù)的單調(diào)性和極值即可得到結(jié)論.

解答 解:若存在x0>0,使得f(x0)≤0有解,
則由f(x)=$\frac{a}{x}$-1+lnx≤0,即$\frac{a}{x}$≤1-lnx,
即a≤x-xlnx,設(shè)h(x)=x-xlnx,
則h′(x)=1-(lnx+x•$\frac{1}{x}$)=1-lnx-1=-lnx,
由h′(x)>0得-lnx>0,即lnx<0,得0<x<1,此時函數(shù)遞增,
由h′(x)<0得-lnx<0,即lnx>0,得x>1,此時函數(shù)遞減,
即當x=1時,函數(shù)h(x)取得極大值h(1)=1-ln1=1,
即h(x)≤1
若a≤x-xlnx,有解,則a≤1,
故選:C.

點評 本題主要考查根的存在性性問題,利用參數(shù)分離法,構(gòu)造函數(shù)求出函數(shù)的極值,注意本題是存在性問題,不是恒成立問題,注意兩者的區(qū)別.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知定義在區(qū)間[-π,$\frac{2}{3}$π]上的函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}<φ<\frac{π}{2}$)的圖象關(guān)于直線x=-$\frac{π}{6}$對稱,當x∈$[-\frac{π}{6},\frac{2π}{3}]$時,f(x)的圖象如圖所示.
(1)求f(x)在$[-π,\frac{2}{3}π]$上的表達式;
(2)求方程f(x)=$\frac{{\sqrt{2}}}{2}$的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知雙曲線C與橢圓x2+4y2=64有相同的焦點,且直線$x+\sqrt{3}y=0$為雙曲線C的一條漸近線,則雙曲線C的方程是$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}是等比數(shù)列,其中第七項是1,第四項是8
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{an}的前n項和記為Sn,證明:Sn<128(n=1,2,3,…).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若f(x)=-$\frac{1}{2}$(x-2)2+blnx在(1,+∞)上是減函數(shù),則b的取值范圍是( 。
A.[-1,+∞)B.(-1,+∞)C.(-∞,-1]D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.直線l:y=k(x-2)與雙曲線C:x2-y2=2的左右兩支各有一個交點,則k的取值范圍為( 。
A.k≤-1或k≥1B.-1≤k≤1C.-$\sqrt{2}$<k<$\sqrt{2}$D.-1<k<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)a,b是異面直線,a?平面α,則過直線b與平面α平行的平面( 。
A.不存在B.一定有1個C.至多有1個D.一定有2個以上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\left\{\begin{array}{l}{x+1(x>0)}\\{π(x=0)}\\{{x}^{2}(x<0)}\end{array}\right.$,
(1)求f(1),f(-2),f(f(-3))
(2)如果f(x0)=3,求x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.命題“若a=0或b=0,則ab=0”的逆否命題是真命題(填真命題或假命題).

查看答案和解析>>

同步練習冊答案