【題目】2019年,海南等8省公布了高考改革綜合方案將采取模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對(duì)高一一年來(lái)的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

1)若甲同學(xué)隨機(jī)選擇3門功課,求他選到物理、地理兩門功課的概率;

2)試根據(jù)莖葉圖分析甲同學(xué)的物理和歷史哪一學(xué)科成績(jī)更穩(wěn)定.(不需計(jì)算)

3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(jī)(分)與班級(jí)平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計(jì)數(shù)據(jù)如下表所示,試求當(dāng)班級(jí)平均分為50分時(shí),其物理考試成績(jī).(計(jì)算時(shí)精確到0.01

(分)

57

61

65

72

74

77

84

(分)

76

82

82

85

87

90

93

參考數(shù)據(jù):,,,,.

參考公式:,

【答案】1;(2)物理;(3

【解析】

(1)直接利用枚舉法與古典概型概率計(jì)算公式求解;

(2)由莖葉圖可知物理成績(jī)的方差s2物理<歷史成績(jī)的方差s2歷史,故物理成績(jī)更穩(wěn)定;

(3)由表格數(shù)據(jù)先求,再利用公式求出回歸方程,進(jìn)而得解.

(1)記物理歷史分別為,,思想政治地理化學(xué)生物分別為,,,,

由題意可知考生選擇的情形有,,,,,,,,,,,,12,

他選到物理地理兩門功課的滿情形有,3,

∴甲同學(xué)選到物理地理兩門功課的概率為;

(2)由莖葉圖可知物理成績(jī)數(shù)據(jù)更集中,

故物理成績(jī)的方差歷史成績(jī)的方差,故物理成績(jī)更穩(wěn)定;

(3),,

,

,

關(guān)于的回歸方程為,

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的方程在區(qū)間內(nèi)無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的直角頂點(diǎn)軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,直線的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于即此圓的圓心為,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古人云:腹有詩(shī)書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國(guó),校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問(wèn)卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:

一周課外讀書時(shí)間/

合計(jì)

頻數(shù)

4

6

10

12

14

24

46

34

頻率

0.02

0.03

0.05

0.06

0.07

0.12

0.25

0.17

1

1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).

2)如果讀書時(shí)間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20.

①求每層應(yīng)抽取的人數(shù);

②若從中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,分別是,的中點(diǎn).

1)求證:平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)若對(duì)任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個(gè),標(biāo)數(shù)字5的小球有1個(gè).從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字.

(1)求取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,

(1)求證:平面ABCD;

(2),點(diǎn)FEC上,且滿足EF=2FC,求二面角FADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線.

(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;

(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案