【題目】如圖,在直三棱柱中,,,分別是,的中點(diǎn).

1)求證:平面;

2)求證:平面平面

【答案】詳見解析詳見解析

【解析】

試題分析:證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾知識,如三角形中位線性質(zhì),及利用柱體性質(zhì),如上下底面對應(yīng)邊相互平行證明面面垂直,一般利用面面垂直判定定理,即從線面垂直出發(fā)給予證明,而線面垂直的證明,往往需要利用線面垂直判定與性質(zhì)定理進(jìn)行多次轉(zhuǎn)化:棱柱性質(zhì)得側(cè)棱垂直于底面底面,轉(zhuǎn)化為線線垂直;又根據(jù)線線平行,將線線垂直進(jìn)行轉(zhuǎn)化,根據(jù)線面垂直判定定理得平面

試題解析:證明:(1)因為,分別是,的中點(diǎn),所以, ...........2

又因為在三棱柱中,,所以. ...............4

平面,平面,所以平面. ...............6

2)在直三棱柱中,底面

底面,所以. .............8

,所以, ..........10

平面,且,所以平面. ...............12

平面,所以平面平面 ............14

(注:第(2)小題也可以用面面垂直的性質(zhì)定理證明平面,類似給分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為

(1)求橢圓的方程;

(2)如圖,點(diǎn)為橢圓上一動點(diǎn)(非長軸端點(diǎn)),為左、右焦點(diǎn),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體中,、均垂直于平面,,的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,海南等8省公布了高考改革綜合方案將采取模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對高一一年來的七次考試成績進(jìn)行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.

1)若甲同學(xué)隨機(jī)選擇3門功課,求他選到物理、地理兩門功課的概率;

2)試根據(jù)莖葉圖分析甲同學(xué)的物理和歷史哪一學(xué)科成績更穩(wěn)定.(不需計算)

3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(分)與班級平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表所示,試求當(dāng)班級平均分為50分時,其物理考試成績.(計算時精確到0.01

(分)

57

61

65

72

74

77

84

(分)

76

82

82

85

87

90

93

參考數(shù)據(jù):,,,,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個單位,然后橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線

1)求曲線和曲線的直角坐標(biāo)方程;

2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點(diǎn),為圓上任意點(diǎn),且最大值為.

1)求拋物線的方程;

2)若在拋物線上,過作圓的兩條切線交拋物線,求中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為 人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績莖葉圖如下:

(1)現(xiàn)從乙班數(shù)學(xué)成績不低于 分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績?yōu)?/span> 分的同學(xué)被抽中的概率;

(2)學(xué)校規(guī)定:成績不低于 分的優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.

附:參考公式及數(shù)據(jù)

查看答案和解析>>

同步練習(xí)冊答案